Spaces:
Running
Running
shaocongma
commited on
Commit
·
c304855
1
Parent(s):
365213e
Bug fix.
Browse files- app.py +37 -28
- auto_backgrounds.py +1 -1
- latex_templates/{pre_refs.bib → example_references.bib} +0 -0
- requirements.txt +0 -0
- utils/references.py +3 -0
- utils/tex_processing.py +2 -1
app.py
CHANGED
@@ -21,6 +21,9 @@ from utils.file_operations import hash_name
|
|
21 |
# 1. Check if there are any duplicated citations
|
22 |
# 2. Remove potential thebibliography and bibitem in .tex file
|
23 |
|
|
|
|
|
|
|
24 |
openai_key = os.getenv("OPENAI_API_KEY")
|
25 |
access_key_id = os.getenv('AWS_ACCESS_KEY_ID')
|
26 |
secret_access_key = os.getenv('AWS_SECRET_ACCESS_KEY')
|
@@ -42,17 +45,19 @@ else:
|
|
42 |
IS_OPENAI_API_KEY_AVAILABLE = False
|
43 |
|
44 |
|
45 |
-
def clear_inputs(
|
46 |
return "", ""
|
47 |
|
48 |
|
49 |
def wrapped_generator(paper_title, paper_description, openai_api_key=None,
|
50 |
-
|
51 |
cache_mode=IS_CACHE_AVAILABLE):
|
52 |
# if `cache_mode` is True, then follow the following steps:
|
53 |
# check if "title"+"description" have been generated before
|
54 |
# if so, download from the cloud storage, return it
|
55 |
# if not, generate the result.
|
|
|
|
|
56 |
if openai_api_key is not None:
|
57 |
openai.api_key = openai_api_key
|
58 |
openai.Model.list()
|
@@ -60,9 +65,8 @@ def wrapped_generator(paper_title, paper_description, openai_api_key=None,
|
|
60 |
if cache_mode:
|
61 |
from utils.storage import list_all_files, download_file, upload_file
|
62 |
# check if "title"+"description" have been generated before
|
63 |
-
|
64 |
input_dict = {"title": paper_title, "description": paper_description,
|
65 |
-
"generator": "generate_draft"}
|
66 |
file_name = hash_name(input_dict) + ".zip"
|
67 |
file_list = list_all_files()
|
68 |
# print(f"{file_name} will be generated. Check the file list {file_list}")
|
@@ -73,17 +77,17 @@ def wrapped_generator(paper_title, paper_description, openai_api_key=None,
|
|
73 |
else:
|
74 |
# generate the result.
|
75 |
# output = fake_generate_backgrounds(title, description, openai_key)
|
76 |
-
output =generate_draft(paper_title, paper_description, template=
|
77 |
-
|
78 |
-
|
79 |
# output = generate_draft(paper_title, paper_description, template, "gpt-4")
|
80 |
upload_file(output)
|
81 |
return output
|
82 |
else:
|
83 |
# output = fake_generate_backgrounds(title, description, openai_key)
|
84 |
-
output =generate_draft(paper_title, paper_description, template=
|
85 |
-
|
86 |
-
|
87 |
return output
|
88 |
|
89 |
|
@@ -101,12 +105,12 @@ ACADEMIC_PAPER = """## 一键生成论文初稿
|
|
101 |
3. 在右侧下载.zip格式的输出,在Overleaf上编译浏览.
|
102 |
"""
|
103 |
|
104 |
-
|
105 |
with gr.Blocks(theme=theme) as demo:
|
106 |
gr.Markdown('''
|
107 |
# Auto-Draft: 文献整理辅助工具
|
108 |
|
109 |
-
本Demo提供对[Auto-Draft](https://github.com/CCCBora/auto-draft)的auto_draft
|
|
|
110 |
|
111 |
***2023-05-03 Update***: 在公开版本中为大家提供了输入OpenAI API Key的地址, 如果有GPT-4的API KEY的话可以在这里体验!
|
112 |
|
@@ -127,7 +131,6 @@ with gr.Blocks(theme=theme) as demo:
|
|
127 |
with gr.Tab("学术论文"):
|
128 |
gr.Markdown(ACADEMIC_PAPER)
|
129 |
|
130 |
-
|
131 |
title = gr.Textbox(value="Playing Atari with Deep Reinforcement Learning", lines=1, max_lines=1,
|
132 |
label="Title", info="论文标题")
|
133 |
|
@@ -139,34 +142,37 @@ with gr.Blocks(theme=theme) as demo:
|
|
139 |
with gr.Column():
|
140 |
with gr.Row():
|
141 |
template = gr.Dropdown(label="Template", choices=["ICLR2022"], value="ICLR2022",
|
142 |
-
|
143 |
-
|
144 |
-
model_selection = gr.Dropdown(label="Model", choices=["gpt-4", "gpt-3.5-turbo"],
|
145 |
-
|
146 |
-
|
|
|
147 |
gr.Markdown('''
|
148 |
上传.bib文件提供AI需要参考的文献.
|
149 |
''')
|
150 |
bibtex_file = gr.File(label="Upload .bib file", file_types=["text"],
|
151 |
interactive=True)
|
152 |
gr.Examples(
|
153 |
-
examples=["latex_templates/
|
154 |
inputs=bibtex_file
|
155 |
)
|
156 |
with gr.Column():
|
157 |
search_engine = gr.Dropdown(label="Search Engine",
|
158 |
choices=["ArXiv", "Semantic Scholar", "Google Scholar", "None"],
|
159 |
-
value=
|
160 |
interactive=False,
|
161 |
info="用于决定GPT-4用什么搜索引擎来搜索文献. (暂不支持修改)")
|
162 |
tldr_checkbox = gr.Checkbox(value=True, label="TLDR;",
|
163 |
-
|
164 |
-
|
165 |
-
sections = gr.CheckboxGroup(
|
166 |
-
|
167 |
-
|
|
|
|
|
168 |
slider = gr.Slider(minimum=1, maximum=100, value=50, step=1,
|
169 |
-
interactive
|
170 |
|
171 |
with gr.Row():
|
172 |
clear_button_pp = gr.Button("Clear")
|
@@ -205,8 +211,11 @@ with gr.Blocks(theme=theme) as demo:
|
|
205 |
file_output = gr.File(label="Output")
|
206 |
|
207 |
clear_button_pp.click(fn=clear_inputs, inputs=[title, description_pp], outputs=[title, description_pp])
|
208 |
-
# submit_button_pp.click(fn=wrapped_generator,
|
209 |
-
|
|
|
|
|
|
|
210 |
|
211 |
demo.queue(concurrency_count=1, max_size=5, api_open=False)
|
212 |
demo.launch()
|
|
|
21 |
# 1. Check if there are any duplicated citations
|
22 |
# 2. Remove potential thebibliography and bibitem in .tex file
|
23 |
|
24 |
+
#######################################################################################################################
|
25 |
+
# Check if openai and cloud storage available
|
26 |
+
#######################################################################################################################
|
27 |
openai_key = os.getenv("OPENAI_API_KEY")
|
28 |
access_key_id = os.getenv('AWS_ACCESS_KEY_ID')
|
29 |
secret_access_key = os.getenv('AWS_SECRET_ACCESS_KEY')
|
|
|
45 |
IS_OPENAI_API_KEY_AVAILABLE = False
|
46 |
|
47 |
|
48 |
+
def clear_inputs(*args):
|
49 |
return "", ""
|
50 |
|
51 |
|
52 |
def wrapped_generator(paper_title, paper_description, openai_api_key=None,
|
53 |
+
paper_template="ICLR2022", tldr=True, max_num_refs=50, selected_sections=None, bib_refs=None, model="gpt-4",
|
54 |
cache_mode=IS_CACHE_AVAILABLE):
|
55 |
# if `cache_mode` is True, then follow the following steps:
|
56 |
# check if "title"+"description" have been generated before
|
57 |
# if so, download from the cloud storage, return it
|
58 |
# if not, generate the result.
|
59 |
+
if bib_refs is not None:
|
60 |
+
bib_refs = bib_refs.name
|
61 |
if openai_api_key is not None:
|
62 |
openai.api_key = openai_api_key
|
63 |
openai.Model.list()
|
|
|
65 |
if cache_mode:
|
66 |
from utils.storage import list_all_files, download_file, upload_file
|
67 |
# check if "title"+"description" have been generated before
|
|
|
68 |
input_dict = {"title": paper_title, "description": paper_description,
|
69 |
+
"generator": "generate_draft"}
|
70 |
file_name = hash_name(input_dict) + ".zip"
|
71 |
file_list = list_all_files()
|
72 |
# print(f"{file_name} will be generated. Check the file list {file_list}")
|
|
|
77 |
else:
|
78 |
# generate the result.
|
79 |
# output = fake_generate_backgrounds(title, description, openai_key)
|
80 |
+
output = generate_draft(paper_title, paper_description, template=paper_template,
|
81 |
+
tldr=tldr, max_num_refs=max_num_refs,
|
82 |
+
sections=selected_sections, bib_refs=bib_refs, model=model)
|
83 |
# output = generate_draft(paper_title, paper_description, template, "gpt-4")
|
84 |
upload_file(output)
|
85 |
return output
|
86 |
else:
|
87 |
# output = fake_generate_backgrounds(title, description, openai_key)
|
88 |
+
output = generate_draft(paper_title, paper_description, template=paper_template,
|
89 |
+
tldr=tldr, max_num_refs=max_num_refs,
|
90 |
+
sections=selected_sections, bib_refs=bib_refs, model=model)
|
91 |
return output
|
92 |
|
93 |
|
|
|
105 |
3. 在右侧下载.zip格式的输出,在Overleaf上编译浏览.
|
106 |
"""
|
107 |
|
|
|
108 |
with gr.Blocks(theme=theme) as demo:
|
109 |
gr.Markdown('''
|
110 |
# Auto-Draft: 文献整理辅助工具
|
111 |
|
112 |
+
本Demo提供对[Auto-Draft](https://github.com/CCCBora/auto-draft)的auto_draft功能的测试.
|
113 |
+
通过输入想要生成的论文名称(比如Playing atari with deep reinforcement learning),即可由AI辅助生成论文模板.
|
114 |
|
115 |
***2023-05-03 Update***: 在公开版本中为大家提供了输入OpenAI API Key的地址, 如果有GPT-4的API KEY的话可以在这里体验!
|
116 |
|
|
|
131 |
with gr.Tab("学术论文"):
|
132 |
gr.Markdown(ACADEMIC_PAPER)
|
133 |
|
|
|
134 |
title = gr.Textbox(value="Playing Atari with Deep Reinforcement Learning", lines=1, max_lines=1,
|
135 |
label="Title", info="论文标题")
|
136 |
|
|
|
142 |
with gr.Column():
|
143 |
with gr.Row():
|
144 |
template = gr.Dropdown(label="Template", choices=["ICLR2022"], value="ICLR2022",
|
145 |
+
interactive=False,
|
146 |
+
info="生成论文的参考模板. (暂不支持修改)")
|
147 |
+
model_selection = gr.Dropdown(label="Model", choices=["gpt-4", "gpt-3.5-turbo"],
|
148 |
+
value="gpt-4",
|
149 |
+
interactive=True,
|
150 |
+
info="生成论文用到的语言模型.")
|
151 |
gr.Markdown('''
|
152 |
上传.bib文件提供AI需要参考的文献.
|
153 |
''')
|
154 |
bibtex_file = gr.File(label="Upload .bib file", file_types=["text"],
|
155 |
interactive=True)
|
156 |
gr.Examples(
|
157 |
+
examples=["latex_templates/example_references.bib"],
|
158 |
inputs=bibtex_file
|
159 |
)
|
160 |
with gr.Column():
|
161 |
search_engine = gr.Dropdown(label="Search Engine",
|
162 |
choices=["ArXiv", "Semantic Scholar", "Google Scholar", "None"],
|
163 |
+
value="Semantic Scholar",
|
164 |
interactive=False,
|
165 |
info="用于决定GPT-4用什么搜索引擎来搜索文献. (暂不支持修改)")
|
166 |
tldr_checkbox = gr.Checkbox(value=True, label="TLDR;",
|
167 |
+
info="选择此筐表示将使用Semantic Scholar的TLDR作为文献的总结.",
|
168 |
+
interactive=True)
|
169 |
+
sections = gr.CheckboxGroup(
|
170 |
+
choices=["introduction", "related works", "backgrounds", "methodology", "experiments",
|
171 |
+
"conclusion", "abstract"],
|
172 |
+
type="value", label="生成章节", interactive=True,
|
173 |
+
value=["introduction", "related works"])
|
174 |
slider = gr.Slider(minimum=1, maximum=100, value=50, step=1,
|
175 |
+
interactive=True, label="最大参考文献数目")
|
176 |
|
177 |
with gr.Row():
|
178 |
clear_button_pp = gr.Button("Clear")
|
|
|
211 |
file_output = gr.File(label="Output")
|
212 |
|
213 |
clear_button_pp.click(fn=clear_inputs, inputs=[title, description_pp], outputs=[title, description_pp])
|
214 |
+
# submit_button_pp.click(fn=wrapped_generator,
|
215 |
+
# inputs=[title, description_pp, key, template, tldr, slider, sections, bibtex_file], outputs=file_output)
|
216 |
+
submit_button_pp.click(fn=wrapped_generator,
|
217 |
+
inputs=[title, description_pp, key, template, tldr_checkbox, slider, sections, bibtex_file,
|
218 |
+
model_selection], outputs=file_output)
|
219 |
|
220 |
demo.queue(concurrency_count=1, max_size=5, api_open=False)
|
221 |
demo.launch()
|
auto_backgrounds.py
CHANGED
@@ -107,7 +107,7 @@ def generate_backgrounds(title, description="", template="ICLR2022", model="gpt-
|
|
107 |
|
108 |
|
109 |
def generate_draft(title, description="", template="ICLR2022",
|
110 |
-
|
111 |
# pre-processing `sections` parameter;
|
112 |
if sections is None:
|
113 |
sections = ["introduction", "related works", "backgrounds", "methodology", "experiments", "conclusion", "abstract"]
|
|
|
107 |
|
108 |
|
109 |
def generate_draft(title, description="", template="ICLR2022",
|
110 |
+
tldr=True, max_kw_refs=10, max_num_refs=30, sections=None, bib_refs=None, model="gpt-4"):
|
111 |
# pre-processing `sections` parameter;
|
112 |
if sections is None:
|
113 |
sections = ["introduction", "related works", "backgrounds", "methodology", "experiments", "conclusion", "abstract"]
|
latex_templates/{pre_refs.bib → example_references.bib}
RENAMED
File without changes
|
requirements.txt
CHANGED
Binary files a/requirements.txt and b/requirements.txt differ
|
|
utils/references.py
CHANGED
@@ -21,6 +21,7 @@
|
|
21 |
import requests
|
22 |
import re
|
23 |
import bibtexparser
|
|
|
24 |
from scholarly import scholarly
|
25 |
from scholarly import ProxyGenerator
|
26 |
|
@@ -239,6 +240,8 @@ class References:
|
|
239 |
# use embeddings to evaluate; keep top k relevant references in papers
|
240 |
# send (title, .bib file) to evaluate embeddings; recieve truncated papers
|
241 |
papers = self._get_papers(keyword = "_all")
|
|
|
|
|
242 |
|
243 |
# clear the bibtex file
|
244 |
with open(path_to_bibtex, "w", encoding="utf-8") as file:
|
|
|
21 |
import requests
|
22 |
import re
|
23 |
import bibtexparser
|
24 |
+
import random
|
25 |
from scholarly import scholarly
|
26 |
from scholarly import ProxyGenerator
|
27 |
|
|
|
240 |
# use embeddings to evaluate; keep top k relevant references in papers
|
241 |
# send (title, .bib file) to evaluate embeddings; recieve truncated papers
|
242 |
papers = self._get_papers(keyword = "_all")
|
243 |
+
random.shuffle(papers)
|
244 |
+
papers = papers[:max_num_refs]
|
245 |
|
246 |
# clear the bibtex file
|
247 |
with open(path_to_bibtex, "w", encoding="utf-8") as file:
|
utils/tex_processing.py
CHANGED
@@ -19,10 +19,11 @@ def replace_title(save_to_path, title):
|
|
19 |
|
20 |
# check if citations are in bibtex.
|
21 |
|
22 |
-
|
23 |
# replace citations
|
24 |
|
25 |
# sometimes the output may include thebibliography and bibitem . remove all of it.
|
26 |
|
|
|
|
|
27 |
|
28 |
|
|
|
19 |
|
20 |
# check if citations are in bibtex.
|
21 |
|
|
|
22 |
# replace citations
|
23 |
|
24 |
# sometimes the output may include thebibliography and bibitem . remove all of it.
|
25 |
|
26 |
+
# return all .png and replace it using placeholder.
|
27 |
+
|
28 |
|
29 |
|