Spaces:
Running
Running
shaocongma
commited on
Commit
·
c160ff7
1
Parent(s):
72c76c9
Add references generation.
Browse files- app.py +35 -16
- latex_templates/ICLR2022/fig.png +0 -0
- latex_templates/ICLR2022/template.tex +1 -1
- references_generator.py +73 -0
- section_generator.py +1 -1
app.py
CHANGED
@@ -3,6 +3,7 @@ import os
|
|
3 |
import openai
|
4 |
from auto_backgrounds import generate_backgrounds, generate_draft
|
5 |
from utils.file_operations import hash_name
|
|
|
6 |
|
7 |
# note: App白屏bug:允许第三方cookie
|
8 |
# todo:
|
@@ -48,6 +49,9 @@ else:
|
|
48 |
def clear_inputs(*args):
|
49 |
return "", ""
|
50 |
|
|
|
|
|
|
|
51 |
|
52 |
def wrapped_generator(paper_title, paper_description, openai_api_key=None,
|
53 |
paper_template="ICLR2022", tldr=True, max_num_refs=50, selected_sections=None, bib_refs=None, model="gpt-4",
|
@@ -91,6 +95,11 @@ def wrapped_generator(paper_title, paper_description, openai_api_key=None,
|
|
91 |
return output
|
92 |
|
93 |
|
|
|
|
|
|
|
|
|
|
|
94 |
theme = gr.themes.Default(font=gr.themes.GoogleFont("Questrial"))
|
95 |
# .set(
|
96 |
# background_fill_primary='#E5E4E2',
|
@@ -105,6 +114,14 @@ ACADEMIC_PAPER = """## 一键生成论文初稿
|
|
105 |
3. 在右侧下载.zip格式的输出,在Overleaf上编译浏览.
|
106 |
"""
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
with gr.Blocks(theme=theme) as demo:
|
109 |
gr.Markdown('''
|
110 |
# Auto-Draft: 文献整理辅助工具
|
@@ -176,23 +193,22 @@ with gr.Blocks(theme=theme) as demo:
|
|
176 |
clear_button_pp = gr.Button("Clear")
|
177 |
submit_button_pp = gr.Button("Submit", variant="primary")
|
178 |
|
179 |
-
with gr.Tab("
|
180 |
-
gr.Markdown(
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
with gr.Tab("论文润色"):
|
192 |
gr.Markdown('''
|
193 |
<h1 style="text-align: center;">Coming soon!</h1>
|
194 |
''')
|
195 |
-
with gr.Tab("
|
196 |
gr.Markdown('''
|
197 |
<h1 style="text-align: center;">Coming soon!</h1>
|
198 |
''')
|
@@ -207,13 +223,16 @@ with gr.Blocks(theme=theme) as demo:
|
|
207 |
当`Cache`显示AVAILABLE的时候, 所有的输入和输出会被备份到我的云储存中. 显示NOT AVAILABLE的时候不影响实际使用.
|
208 |
`OpenAI API`: <span style="{style_mapping[IS_OPENAI_API_KEY_AVAILABLE]}">{availability_mapping[IS_OPENAI_API_KEY_AVAILABLE]}</span>. `Cache`: <span style="{style_mapping[IS_CACHE_AVAILABLE]}">{availability_mapping[IS_CACHE_AVAILABLE]}</span>.''')
|
209 |
file_output = gr.File(label="Output")
|
|
|
210 |
|
211 |
clear_button_pp.click(fn=clear_inputs, inputs=[title, description_pp], outputs=[title, description_pp])
|
212 |
-
# submit_button_pp.click(fn=wrapped_generator,
|
213 |
-
# inputs=[title, description_pp, key, template, tldr, slider, sections, bibtex_file], outputs=file_output)
|
214 |
submit_button_pp.click(fn=wrapped_generator,
|
215 |
inputs=[title, description_pp, key, template, tldr_checkbox, slider, sections, bibtex_file,
|
216 |
model_selection], outputs=file_output)
|
217 |
|
|
|
|
|
|
|
|
|
218 |
demo.queue(concurrency_count=1, max_size=5, api_open=False)
|
219 |
demo.launch()
|
|
|
3 |
import openai
|
4 |
from auto_backgrounds import generate_backgrounds, generate_draft
|
5 |
from utils.file_operations import hash_name
|
6 |
+
from references_generator import generate_top_k_references
|
7 |
|
8 |
# note: App白屏bug:允许第三方cookie
|
9 |
# todo:
|
|
|
49 |
def clear_inputs(*args):
|
50 |
return "", ""
|
51 |
|
52 |
+
def clear_inputs_refs(*args):
|
53 |
+
return "", 5
|
54 |
+
|
55 |
|
56 |
def wrapped_generator(paper_title, paper_description, openai_api_key=None,
|
57 |
paper_template="ICLR2022", tldr=True, max_num_refs=50, selected_sections=None, bib_refs=None, model="gpt-4",
|
|
|
95 |
return output
|
96 |
|
97 |
|
98 |
+
def wrapped_references_generator(paper_title, num_refs):
|
99 |
+
return generate_top_k_references(paper_title, top_k=num_refs)
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
theme = gr.themes.Default(font=gr.themes.GoogleFont("Questrial"))
|
104 |
# .set(
|
105 |
# background_fill_primary='#E5E4E2',
|
|
|
114 |
3. 在右侧下载.zip格式的输出,在Overleaf上编译浏览.
|
115 |
"""
|
116 |
|
117 |
+
|
118 |
+
REFERENCES = """## 一键搜索相关论文
|
119 |
+
|
120 |
+
1. 在Title文本框中输入想要搜索文献的论文(比如Playing Atari with Deep Reinforcement Learning).
|
121 |
+
2. 点击Submit. 等待大概十分钟.
|
122 |
+
3. 在右侧JSON处会显示相关文献.
|
123 |
+
"""
|
124 |
+
|
125 |
with gr.Blocks(theme=theme) as demo:
|
126 |
gr.Markdown('''
|
127 |
# Auto-Draft: 文献整理辅助工具
|
|
|
193 |
clear_button_pp = gr.Button("Clear")
|
194 |
submit_button_pp = gr.Button("Submit", variant="primary")
|
195 |
|
196 |
+
with gr.Tab("文献搜索 (NEW!)"):
|
197 |
+
gr.Markdown(REFERENCES)
|
198 |
+
|
199 |
+
title_refs = gr.Textbox(value="Playing Atari with Deep Reinforcement Learning", lines=1, max_lines=1,
|
200 |
+
label="Title", info="论文标题")
|
201 |
+
slider_refs = gr.Slider(minimum=1, maximum=100, value=5, step=1,
|
202 |
+
interactive=True, label="最相关的参考文献数目")
|
203 |
+
with gr.Row():
|
204 |
+
clear_button_refs = gr.Button("Clear")
|
205 |
+
submit_button_refs = gr.Button("Submit", variant="primary")
|
206 |
+
|
207 |
+
with gr.Tab("文献综述 (Coming soon!)"):
|
|
|
208 |
gr.Markdown('''
|
209 |
<h1 style="text-align: center;">Coming soon!</h1>
|
210 |
''')
|
211 |
+
with gr.Tab("Github文档 (Coming soon!)"):
|
212 |
gr.Markdown('''
|
213 |
<h1 style="text-align: center;">Coming soon!</h1>
|
214 |
''')
|
|
|
223 |
当`Cache`显示AVAILABLE的时候, 所有的输入和输出会被备份到我的云储存中. 显示NOT AVAILABLE的时候不影响实际使用.
|
224 |
`OpenAI API`: <span style="{style_mapping[IS_OPENAI_API_KEY_AVAILABLE]}">{availability_mapping[IS_OPENAI_API_KEY_AVAILABLE]}</span>. `Cache`: <span style="{style_mapping[IS_CACHE_AVAILABLE]}">{availability_mapping[IS_CACHE_AVAILABLE]}</span>.''')
|
225 |
file_output = gr.File(label="Output")
|
226 |
+
json_output = gr.JSON(label="References")
|
227 |
|
228 |
clear_button_pp.click(fn=clear_inputs, inputs=[title, description_pp], outputs=[title, description_pp])
|
|
|
|
|
229 |
submit_button_pp.click(fn=wrapped_generator,
|
230 |
inputs=[title, description_pp, key, template, tldr_checkbox, slider, sections, bibtex_file,
|
231 |
model_selection], outputs=file_output)
|
232 |
|
233 |
+
clear_button_refs.click(fn=clear_inputs_refs, inputs=[title_refs, slider_refs], outputs=[title_refs, slider_refs])
|
234 |
+
submit_button_refs.click(fn=wrapped_references_generator,
|
235 |
+
inputs=[title_refs, slider_refs], outputs=json_output)
|
236 |
+
|
237 |
demo.queue(concurrency_count=1, max_size=5, api_open=False)
|
238 |
demo.launch()
|
latex_templates/ICLR2022/fig.png
CHANGED
latex_templates/ICLR2022/template.tex
CHANGED
@@ -7,7 +7,7 @@
|
|
7 |
\usepackage{hyperref}
|
8 |
\usepackage{url}
|
9 |
\usepackage{algorithm}
|
10 |
-
\usepackage{
|
11 |
|
12 |
\title{TITLE}
|
13 |
\author{GPT-4}
|
|
|
7 |
\usepackage{hyperref}
|
8 |
\usepackage{url}
|
9 |
\usepackage{algorithm}
|
10 |
+
\usepackage{algpseudocode}
|
11 |
|
12 |
\title{TITLE}
|
13 |
\author{GPT-4}
|
references_generator.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os.path
|
2 |
+
import json
|
3 |
+
from utils.references import References
|
4 |
+
from section_generator import section_generation_bg, keywords_generation, figures_generation, section_generation
|
5 |
+
import itertools
|
6 |
+
from gradio_client import Client
|
7 |
+
|
8 |
+
def generate_raw_references(title, description="",
|
9 |
+
bib_refs=None, tldr=False, max_kw_refs=10, save_to="ref.bib"):
|
10 |
+
# load pre-provided references
|
11 |
+
ref = References(title, bib_refs)
|
12 |
+
|
13 |
+
# generate multiple keywords for searching
|
14 |
+
input_dict = {"title": title, "description": description}
|
15 |
+
keywords, usage = keywords_generation(input_dict)
|
16 |
+
keywords = list(keywords)
|
17 |
+
comb_keywords = list(itertools.combinations(keywords, 2))
|
18 |
+
for comb_keyword in comb_keywords:
|
19 |
+
keywords.append(" ".join(comb_keyword))
|
20 |
+
keywords = {keyword:max_kw_refs for keyword in keywords}
|
21 |
+
print(f"keywords: {keywords}\n\n")
|
22 |
+
|
23 |
+
ref.collect_papers(keywords, tldr=tldr)
|
24 |
+
paper_json = ref.to_json()
|
25 |
+
|
26 |
+
with open(save_to, "w") as f:
|
27 |
+
json.dump(paper_json, f)
|
28 |
+
|
29 |
+
return save_to, paper_json
|
30 |
+
|
31 |
+
def generate_top_k_references(title, description="",
|
32 |
+
bib_refs=None, tldr=False, max_kw_refs=10, save_to="ref.bib", top_k=5):
|
33 |
+
json_path, json_content = generate_raw_references(title, description, bib_refs, tldr, max_kw_refs, save_to)
|
34 |
+
|
35 |
+
client = Client("https://shaocongma-evaluate-specter-embeddings.hf.space/")
|
36 |
+
result = client.predict(
|
37 |
+
title, # str in 'Title' Textbox component
|
38 |
+
json_path, # str (filepath or URL to file) in 'Papers JSON (as string)' File component
|
39 |
+
top_k, # int | float (numeric value between 1 and 50) in 'Top-k Relevant Papers' Slider component
|
40 |
+
api_name="/get_k_relevant_papers"
|
41 |
+
)
|
42 |
+
with open(result) as f:
|
43 |
+
result = json.load(f)
|
44 |
+
return result
|
45 |
+
|
46 |
+
if __name__ == "__main__":
|
47 |
+
import openai
|
48 |
+
openai.api_key = os.getenv("OPENAI_API_KEY")
|
49 |
+
|
50 |
+
title = "Using interpretable boosting algorithms for modeling environmental and agricultural data"
|
51 |
+
description = ""
|
52 |
+
save_to = "paper.json"
|
53 |
+
save_to, paper_json = generate_raw_references(title, description, save_to=save_to)
|
54 |
+
|
55 |
+
print("`paper.json` has been generated. Now evaluating its similarity...")
|
56 |
+
|
57 |
+
k = 5
|
58 |
+
client = Client("https://shaocongma-evaluate-specter-embeddings.hf.space/")
|
59 |
+
result = client.predict(
|
60 |
+
title, # str in 'Title' Textbox component
|
61 |
+
save_to, # str (filepath or URL to file) in 'Papers JSON (as string)' File component
|
62 |
+
k, # int | float (numeric value between 1 and 50) in 'Top-k Relevant Papers' Slider component
|
63 |
+
api_name="/get_k_relevant_papers"
|
64 |
+
)
|
65 |
+
|
66 |
+
with open(result) as f:
|
67 |
+
result = json.load(f)
|
68 |
+
|
69 |
+
print(result)
|
70 |
+
|
71 |
+
save_to = "paper2.json"
|
72 |
+
with open(save_to, "w") as f:
|
73 |
+
json.dump(result, f)
|
section_generator.py
CHANGED
@@ -90,7 +90,7 @@ def keywords_generation(input_dict):
|
|
90 |
attempts_count = 0
|
91 |
while attempts_count < max_attempts:
|
92 |
try:
|
93 |
-
keywords, usage= get_gpt_responses(KEYWORDS_SYSTEM.format(min_refs_num=
|
94 |
model="gpt-3.5-turbo", temperature=0.4)
|
95 |
print(keywords)
|
96 |
output = json.loads(keywords)
|
|
|
90 |
attempts_count = 0
|
91 |
while attempts_count < max_attempts:
|
92 |
try:
|
93 |
+
keywords, usage= get_gpt_responses(KEYWORDS_SYSTEM.format(min_refs_num=1, max_refs_num=10), title,
|
94 |
model="gpt-3.5-turbo", temperature=0.4)
|
95 |
print(keywords)
|
96 |
output = json.loads(keywords)
|