shaocongma commited on
Commit
510bfff
·
1 Parent(s): 1457d21

Bug fix. Complete Prompts mode.

Browse files
app.py CHANGED
@@ -134,7 +134,7 @@ def wrapped_generator(
134
  tldr=True, max_kw_refs=10, bib_refs=None, max_tokens_ref=2048, # references
135
  knowledge_database=None, max_tokens_kd=2048, query_counts=10, # domain knowledge
136
  paper_template="ICLR2022", selected_sections=None, model="gpt-4", prompts_mode=False, # outputs parameters
137
- cache_mode=False # IS_CACHE_AVAILABLE # handle cache mode
138
  ):
139
  # if `cache_mode` is True, then follow the following steps:
140
  # check if "title"+"description" have been generated before
@@ -271,16 +271,16 @@ with gr.Blocks(theme=theme) as demo:
271
  clear_button_pp = gr.Button("Clear")
272
  submit_button_pp = gr.Button("Submit", variant="primary")
273
 
274
- with gr.Tab("文献搜索"):
275
- gr.Markdown(REFERENCES)
276
-
277
- title_refs = gr.Textbox(value="Playing Atari with Deep Reinforcement Learning", lines=1, max_lines=1,
278
- label="Title", info="论文标题")
279
- slider_refs = gr.Slider(minimum=1, maximum=100, value=5, step=1,
280
- interactive=True, label="最相关的参考文献数目")
281
- with gr.Row():
282
- clear_button_refs = gr.Button("Clear")
283
- submit_button_refs = gr.Button("Submit", variant="primary")
284
 
285
  with gr.Tab("文献综述 (Coming soon!)"):
286
  gr.Markdown('''
@@ -312,9 +312,9 @@ with gr.Blocks(theme=theme) as demo:
312
  domain_knowledge, max_tokens_kd_slider, query_counts_slider,
313
  template, sections, model_selection, prompts_mode], outputs=file_output)
314
 
315
- clear_button_refs.click(fn=clear_inputs_refs, inputs=[title_refs, slider_refs], outputs=[title_refs, slider_refs])
316
- submit_button_refs.click(fn=wrapped_references_generator,
317
- inputs=[title_refs, slider_refs, key], outputs=json_output)
318
 
319
  demo.queue(concurrency_count=1, max_size=5, api_open=False)
320
  demo.launch(show_error=True)
 
134
  tldr=True, max_kw_refs=10, bib_refs=None, max_tokens_ref=2048, # references
135
  knowledge_database=None, max_tokens_kd=2048, query_counts=10, # domain knowledge
136
  paper_template="ICLR2022", selected_sections=None, model="gpt-4", prompts_mode=False, # outputs parameters
137
+ cache_mode=IS_CACHE_AVAILABLE # handle cache mode
138
  ):
139
  # if `cache_mode` is True, then follow the following steps:
140
  # check if "title"+"description" have been generated before
 
271
  clear_button_pp = gr.Button("Clear")
272
  submit_button_pp = gr.Button("Submit", variant="primary")
273
 
274
+ # with gr.Tab("文献搜索"):
275
+ # gr.Markdown(REFERENCES)
276
+ #
277
+ # title_refs = gr.Textbox(value="Playing Atari with Deep Reinforcement Learning", lines=1, max_lines=1,
278
+ # label="Title", info="论文标题")
279
+ # slider_refs = gr.Slider(minimum=1, maximum=100, value=5, step=1,
280
+ # interactive=True, label="最相关的参考文献数目")
281
+ # with gr.Row():
282
+ # clear_button_refs = gr.Button("Clear")
283
+ # submit_button_refs = gr.Button("Submit", variant="primary")
284
 
285
  with gr.Tab("文献综述 (Coming soon!)"):
286
  gr.Markdown('''
 
312
  domain_knowledge, max_tokens_kd_slider, query_counts_slider,
313
  template, sections, model_selection, prompts_mode], outputs=file_output)
314
 
315
+ # clear_button_refs.click(fn=clear_inputs_refs, inputs=[title_refs, slider_refs], outputs=[title_refs, slider_refs])
316
+ # submit_button_refs.click(fn=wrapped_references_generator,
317
+ # inputs=[title_refs, slider_refs, key], outputs=json_output)
318
 
319
  demo.queue(concurrency_count=1, max_size=5, api_open=False)
320
  demo.launch(show_error=True)
auto_backgrounds.py CHANGED
@@ -5,6 +5,7 @@ from utils.knowledge import Knowledge
5
  from utils.file_operations import hash_name, make_archive, copy_templates
6
  from utils.tex_processing import create_copies
7
  from section_generator import section_generation # figures_generation, section_generation_bg, keywords_generation,
 
8
  import logging
9
  import time
10
  from langchain.vectorstores import FAISS
@@ -145,6 +146,7 @@ def _generation_setup(title, description="", template="ICLR2022",
145
  print(f"Failed to query from FAISS. Error {e}. Use empty domain knowledge instead.")
146
  domain_knowledge = ""
147
  else:
 
148
  domain_knowledge = ""
149
 
150
  ###################################################################################################################
@@ -249,8 +251,14 @@ def generate_draft(title, description="", # main input
249
  knowledge_database=knowledge_database)
250
 
251
  # main components
 
252
  print(f"================PROCESSING================")
253
  for section in sections:
 
 
 
 
 
254
  print(f"Generate {section} part...")
255
  max_attempts = 4
256
  attempts_count = 0
@@ -273,7 +281,14 @@ def generate_draft(title, description="", # main input
273
  input_dict = {"title": title, "description": description, "generator": "generate_draft"}
274
  filename = hash_name(input_dict) + ".zip"
275
  print("\nMission completed.\n")
276
- return make_archive(destination_folder, filename)
 
 
 
 
 
 
 
277
 
278
 
279
  if __name__ == "__main__":
 
5
  from utils.file_operations import hash_name, make_archive, copy_templates
6
  from utils.tex_processing import create_copies
7
  from section_generator import section_generation # figures_generation, section_generation_bg, keywords_generation,
8
+ from utils.prompts import generate_paper_prompts
9
  import logging
10
  import time
11
  from langchain.vectorstores import FAISS
 
146
  print(f"Failed to query from FAISS. Error {e}. Use empty domain knowledge instead.")
147
  domain_knowledge = ""
148
  else:
149
+ print("Selected database doesn't exist or no database is selected.")
150
  domain_knowledge = ""
151
 
152
  ###################################################################################################################
 
251
  knowledge_database=knowledge_database)
252
 
253
  # main components
254
+ prompts_dict = {}
255
  print(f"================PROCESSING================")
256
  for section in sections:
257
+ if prompts_mode:
258
+ prompts = generate_paper_prompts(paper, section)
259
+ prompts_dict[section] = prompts
260
+ continue
261
+
262
  print(f"Generate {section} part...")
263
  max_attempts = 4
264
  attempts_count = 0
 
281
  input_dict = {"title": title, "description": description, "generator": "generate_draft"}
282
  filename = hash_name(input_dict) + ".zip"
283
  print("\nMission completed.\n")
284
+
285
+ if prompts_mode:
286
+ filename = hash_name(input_dict) + ".json"
287
+ with open(filename, "w") as f:
288
+ json.dump(prompts_dict, f)
289
+ return filename
290
+ else:
291
+ return make_archive(destination_folder, filename)
292
 
293
 
294
  if __name__ == "__main__":
latex_templates/Default/template.tex CHANGED
@@ -14,6 +14,11 @@
14
  \usepackage{algorithm}
15
  \usepackage{algpseudocode}
16
 
 
 
 
 
 
17
  \title{TITLE}
18
  \author{GPT-4}
19
 
 
14
  \usepackage{algorithm}
15
  \usepackage{algpseudocode}
16
 
17
+ \newlength\tindent
18
+ \setlength{\tindent}{\parindent}
19
+ \setlength{\parindent}{0pt}
20
+ \renewcommand{\indent}{\hspace*{\tindent}}
21
+
22
  \title{TITLE}
23
  \author{GPT-4}
24
 
utils/prompts.py CHANGED
@@ -170,7 +170,7 @@ def generate_paper_prompts(paper_info, section):
170
  # ref_instruction_subprompt - give AI references
171
  # self_subprompt - give AI existing written parts
172
  # output_subprompt - tell AI how to output
173
- fundamental_subprompt = "Your task is to write the {section} section of the paper with the title '{title}'. {description}\n"
174
  instruction_subprompt = "\n" \
175
  "Your response should follow the following instructions:\n" \
176
  "{instruction}\n" \
 
170
  # ref_instruction_subprompt - give AI references
171
  # self_subprompt - give AI existing written parts
172
  # output_subprompt - tell AI how to output
173
+ fundamental_subprompt = "Your task is to write the {section} section of the paper with the title '{title}'. This paper has the following contributions: {description}\n"
174
  instruction_subprompt = "\n" \
175
  "Your response should follow the following instructions:\n" \
176
  "{instruction}\n" \
utils/references.py CHANGED
@@ -333,6 +333,8 @@ class References:
333
  # send (title, .bib file) to evaluate embeddings; recieve truncated papers
334
  papers = self._get_papers(keyword="_all")
335
 
 
 
336
  # clear the bibtex file
337
  with open(path_to_bibtex, "w", encoding="utf-8") as file:
338
  file.write("")
@@ -358,6 +360,7 @@ class References:
358
  with open(path_to_bibtex, "a", encoding="utf-8") as file:
359
  file.write(bibtex_entry)
360
  file.write("\n\n")
 
361
  return paper_ids
362
 
363
  def _get_papers(self, keyword="_all"):
 
333
  # send (title, .bib file) to evaluate embeddings; recieve truncated papers
334
  papers = self._get_papers(keyword="_all")
335
 
336
+ l = len(papers)
337
+ print(f"{l} papers will be added to `ref.bib`.")
338
  # clear the bibtex file
339
  with open(path_to_bibtex, "w", encoding="utf-8") as file:
340
  file.write("")
 
360
  with open(path_to_bibtex, "a", encoding="utf-8") as file:
361
  file.write(bibtex_entry)
362
  file.write("\n\n")
363
+ # print(f'{paper["paper_id"]} has been added to `ref.bib`.')
364
  return paper_ids
365
 
366
  def _get_papers(self, keyword="_all"):