Spaces:
Running
Running
Merge pull request #3 from CCCBora/pre-defined-references
Browse files- app.py +77 -16
- auto_backgrounds.py +1 -1
- latex_templates/pre_refs.bib +17 -0
- utils/references.py +86 -28
- utils/tex_processing.py +5 -6
app.py
CHANGED
@@ -6,18 +6,21 @@ from utils.file_operations import hash_name
|
|
6 |
|
7 |
# note: App白屏bug:允许第三方cookie
|
8 |
# todo:
|
9 |
-
#
|
10 |
-
# (including: writing abstract, conclusion, generate keywords, generate figures...)
|
11 |
-
# 5.1 Use GPT 3.5 for abstract, conclusion, ... (or may not)
|
12 |
-
# 5.2 Use local LLM to generate keywords, figures, ...
|
13 |
-
# 5.3 Use embedding to find most related papers (find a paper dataset)
|
14 |
-
# 6. get logs when the procedure is not completed.
|
15 |
# 7. 自己的文件库; 更多的prompts
|
16 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
# future:
|
18 |
-
# 8. Change prompts to langchain
|
19 |
# 4. add auto_polishing function
|
20 |
# 12. Change link to more appealing color # after the website is built;
|
|
|
|
|
21 |
|
22 |
openai_key = os.getenv("OPENAI_API_KEY")
|
23 |
access_key_id = os.getenv('AWS_ACCESS_KEY_ID')
|
@@ -109,19 +112,77 @@ with gr.Blocks(theme=theme) as demo:
|
|
109 |
|
110 |
输入想要生成的论文名称(比如Playing Atari with Deep Reinforcement Learning), 点击Submit, 等待大概十分钟, 下载.zip格式的输出,在Overleaf上编译浏览.
|
111 |
''')
|
|
|
112 |
with gr.Row():
|
113 |
with gr.Column(scale=2):
|
114 |
key = gr.Textbox(value=openai_key, lines=1, max_lines=1, label="OpenAI Key",
|
115 |
visible=not IS_OPENAI_API_KEY_AVAILABLE)
|
|
|
116 |
# generator = gr.Dropdown(choices=["学术论文", "文献总结"], value="文献总结",
|
117 |
# label="Selection", info="目前支持生成'学术论文'和'文献总结'.", interactive=True)
|
118 |
-
title = gr.Textbox(value="Playing Atari with Deep Reinforcement Learning", lines=1, max_lines=1,
|
119 |
-
label="Title", info="论文标题")
|
120 |
-
description = gr.Textbox(lines=5, label="Description (Optional)", visible=False)
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
with gr.Column(scale=1):
|
126 |
style_mapping = {True: "color:white;background-color:green",
|
127 |
False: "color:white;background-color:red"} # todo: to match website's style
|
@@ -133,8 +194,8 @@ with gr.Blocks(theme=theme) as demo:
|
|
133 |
`OpenAI API`: <span style="{style_mapping[IS_OPENAI_API_KEY_AVAILABLE]}">{availability_mapping[IS_OPENAI_API_KEY_AVAILABLE]}</span>. `Cache`: <span style="{style_mapping[IS_CACHE_AVAILABLE]}">{availability_mapping[IS_CACHE_AVAILABLE]}</span>.''')
|
134 |
file_output = gr.File(label="Output")
|
135 |
|
136 |
-
|
137 |
-
|
138 |
|
139 |
demo.queue(concurrency_count=1, max_size=5, api_open=False)
|
140 |
demo.launch()
|
|
|
6 |
|
7 |
# note: App白屏bug:允许第三方cookie
|
8 |
# todo:
|
9 |
+
# 6. get logs when the procedure is not completed. *
|
|
|
|
|
|
|
|
|
|
|
10 |
# 7. 自己的文件库; 更多的prompts
|
11 |
+
# 8. Decide on how to generate the main part of a paper * (Langchain/AutoGPT
|
12 |
+
# 9. Load .bibtex file to generate a pre-defined references list. *
|
13 |
+
# 1. 把paper改成纯JSON?
|
14 |
+
# 2. 实现别的功能
|
15 |
+
# 3. Check API Key GPT-4 Support.
|
16 |
+
# 8. Re-build some components using `langchain`
|
17 |
+
# - in `references.py`, use PromptTemplates.format -> str
|
18 |
+
# - in `gpt_interation`, use LLM
|
19 |
# future:
|
|
|
20 |
# 4. add auto_polishing function
|
21 |
# 12. Change link to more appealing color # after the website is built;
|
22 |
+
# 1. Check if there are any duplicated citations
|
23 |
+
# 2. Remove potential thebibliography and bibitem in .tex file
|
24 |
|
25 |
openai_key = os.getenv("OPENAI_API_KEY")
|
26 |
access_key_id = os.getenv('AWS_ACCESS_KEY_ID')
|
|
|
112 |
|
113 |
输入想要生成的论文名称(比如Playing Atari with Deep Reinforcement Learning), 点击Submit, 等待大概十分钟, 下载.zip格式的输出,在Overleaf上编译浏览.
|
114 |
''')
|
115 |
+
|
116 |
with gr.Row():
|
117 |
with gr.Column(scale=2):
|
118 |
key = gr.Textbox(value=openai_key, lines=1, max_lines=1, label="OpenAI Key",
|
119 |
visible=not IS_OPENAI_API_KEY_AVAILABLE)
|
120 |
+
|
121 |
# generator = gr.Dropdown(choices=["学术论文", "文献总结"], value="文献总结",
|
122 |
# label="Selection", info="目前支持生成'学术论文'和'文献总结'.", interactive=True)
|
|
|
|
|
|
|
123 |
|
124 |
+
# 每个功能做一个tab
|
125 |
+
with gr.Tab("学术论文"):
|
126 |
+
title = gr.Textbox(value="Playing Atari with Deep Reinforcement Learning", lines=1, max_lines=1,
|
127 |
+
label="Title", info="论文标题")
|
128 |
+
|
129 |
+
with gr.Accordion("高级设置", open=False):
|
130 |
+
description_pp = gr.Textbox(lines=5, label="Description (Optional)", visible=True,
|
131 |
+
info="对希望生成的论文的一些描述. 包括这篇论文的创新点, 主要贡献, 等.")
|
132 |
+
|
133 |
+
interactive = False
|
134 |
+
gr.Markdown('''
|
135 |
+
## 下面的功能我只做了UI, 还没来得及实现功能.
|
136 |
+
''')
|
137 |
+
with gr.Row():
|
138 |
+
with gr.Column():
|
139 |
+
gr.Markdown('''
|
140 |
+
Upload .bib file (Optional)
|
141 |
+
|
142 |
+
通过上传.bib文件来控制GPT-4模型必须参考哪些文献.
|
143 |
+
''')
|
144 |
+
bibtex_file = gr.File(label="Upload .bib file", file_types=["text"],
|
145 |
+
interactive=interactive)
|
146 |
+
with gr.Column():
|
147 |
+
search_engine = gr.Dropdown(label="Search Engine",
|
148 |
+
choices=["ArXiv", "Semantic Scholar", "Google Scholar", "None"],
|
149 |
+
value= "Semantic Scholar",
|
150 |
+
interactive=interactive,
|
151 |
+
info="用于决定GPT-4用什么搜索引擎来搜索文献. 选择None的时候仅参考给定文献.")
|
152 |
+
tldr = gr.Checkbox(value=True, label="TLDR;",
|
153 |
+
info="选择此筐表示将使用Semantic Scholar的TLDR作为文献的总结.",
|
154 |
+
interactive = interactive),
|
155 |
+
use_cache = gr.Checkbox(label="总是重新生成",
|
156 |
+
info="选择此筐表示将不会读取已经生成好的文章.",
|
157 |
+
interactive = interactive)
|
158 |
+
slider = gr.Slider(minimum=1, maximum=30, value=20, label="最大参考文献数目",
|
159 |
+
info="过多参考文献会超出Token数限制导致报错,这里限制最大参考文献数目.")
|
160 |
+
|
161 |
+
with gr.Row():
|
162 |
+
clear_button_pp = gr.Button("Clear")
|
163 |
+
submit_button_pp = gr.Button("Submit", variant="primary")
|
164 |
+
|
165 |
+
with gr.Tab("文献综述"):
|
166 |
+
gr.Markdown('''
|
167 |
+
<h1 style="text-align: center;">Coming soon!</h1>
|
168 |
+
''')
|
169 |
+
# topic = gr.Textbox(value="Deep Reinforcement Learning", lines=1, max_lines=1,
|
170 |
+
# label="Topic", info="文献主题")
|
171 |
+
# with gr.Accordion("Advanced Setting"):
|
172 |
+
# description_lr = gr.Textbox(lines=5, label="Description (Optional)", visible=True,
|
173 |
+
# info="对希望生成的综述的一些描述. 包括这篇论文的创新点, 主要贡献, 等.")
|
174 |
+
# with gr.Row():
|
175 |
+
# clear_button_lr = gr.Button("Clear")
|
176 |
+
# submit_button_lr = gr.Button("Submit", variant="primary")
|
177 |
+
with gr.Tab("论文润色"):
|
178 |
+
gr.Markdown('''
|
179 |
+
<h1 style="text-align: center;">Coming soon!</h1>
|
180 |
+
''')
|
181 |
+
with gr.Tab("帮我想想该写什么论文!"):
|
182 |
+
gr.Markdown('''
|
183 |
+
<h1 style="text-align: center;">Coming soon!</h1>
|
184 |
+
''')
|
185 |
+
|
186 |
with gr.Column(scale=1):
|
187 |
style_mapping = {True: "color:white;background-color:green",
|
188 |
False: "color:white;background-color:red"} # todo: to match website's style
|
|
|
194 |
`OpenAI API`: <span style="{style_mapping[IS_OPENAI_API_KEY_AVAILABLE]}">{availability_mapping[IS_OPENAI_API_KEY_AVAILABLE]}</span>. `Cache`: <span style="{style_mapping[IS_CACHE_AVAILABLE]}">{availability_mapping[IS_CACHE_AVAILABLE]}</span>.''')
|
195 |
file_output = gr.File(label="Output")
|
196 |
|
197 |
+
clear_button_pp.click(fn=clear_inputs, inputs=[title, description_pp], outputs=[title, description_pp])
|
198 |
+
submit_button_pp.click(fn=wrapped_generator, inputs=[title, description_pp, key], outputs=file_output)
|
199 |
|
200 |
demo.queue(concurrency_count=1, max_size=5, api_open=False)
|
201 |
demo.launch()
|
auto_backgrounds.py
CHANGED
@@ -91,7 +91,7 @@ def fake_generator(title, description="", template="ICLR2022", model="gpt-4"):
|
|
91 |
return make_archive("sample-output.pdf", filename)
|
92 |
|
93 |
|
94 |
-
def generate_draft(title, description="", template="ICLR2022", model="gpt-4", search_engine="ss", tldr=True, max_kw_refs=
|
95 |
paper, destination_folder, _ = _generation_setup(title, description, template, model, search_engine, tldr, max_kw_refs)
|
96 |
|
97 |
# todo: `list_of_methods` failed to be generated; find a solution ...
|
|
|
91 |
return make_archive("sample-output.pdf", filename)
|
92 |
|
93 |
|
94 |
+
def generate_draft(title, description="", template="ICLR2022", model="gpt-4", search_engine="ss", tldr=True, max_kw_refs=10):
|
95 |
paper, destination_folder, _ = _generation_setup(title, description, template, model, search_engine, tldr, max_kw_refs)
|
96 |
|
97 |
# todo: `list_of_methods` failed to be generated; find a solution ...
|
latex_templates/pre_refs.bib
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
@article{1512.07669,
|
3 |
+
title = {Reinforcement Learning: Stochastic Approximation Algorithms for Markov
|
4 |
+
Decision Processes},
|
5 |
+
author = {Vikram Krishnamurthy},
|
6 |
+
journal={arXiv preprint arXiv:1512.07669},
|
7 |
+
year = {2015},
|
8 |
+
url = {http://arxiv.org/abs/1512.07669v1}
|
9 |
+
}
|
10 |
+
|
11 |
+
@article{1511.02377,
|
12 |
+
title = {The Value Functions of Markov Decision Processes},
|
13 |
+
author = {Ehud Lehrer , Eilon Solan , Omri N. Solan},
|
14 |
+
journal={arXiv preprint arXiv:1511.02377},
|
15 |
+
year = {2015},
|
16 |
+
url = {http://arxiv.org/abs/1511.02377v1}
|
17 |
+
}
|
utils/references.py
CHANGED
@@ -1,18 +1,26 @@
|
|
1 |
-
#
|
2 |
-
#
|
3 |
-
#
|
4 |
-
#
|
5 |
-
#
|
6 |
-
|
|
|
|
|
|
|
|
|
7 |
|
8 |
import requests
|
9 |
import re
|
|
|
|
|
|
|
10 |
|
11 |
|
12 |
######################################################################################################################
|
13 |
# Some basic tools
|
14 |
######################################################################################################################
|
15 |
def remove_newlines(serie):
|
|
|
16 |
serie = serie.replace('\n', ' ')
|
17 |
serie = serie.replace('\\n', ' ')
|
18 |
serie = serie.replace(' ', ' ')
|
@@ -20,6 +28,47 @@ def remove_newlines(serie):
|
|
20 |
return serie
|
21 |
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
######################################################################################################################
|
24 |
# Semantic Scholar (SS) API
|
25 |
######################################################################################################################
|
@@ -63,7 +112,11 @@ def _collect_papers_ss(keyword, counts=3, tldr=False):
|
|
63 |
pattern = r'^\w+'
|
64 |
words = re.findall(pattern, title)
|
65 |
# return last_name + year_str + title.split(' ', 1)[0]
|
66 |
-
|
|
|
|
|
|
|
|
|
67 |
|
68 |
def extract_author_info(raw_authors):
|
69 |
authors = [author['name'] for author in raw_authors]
|
@@ -71,7 +124,7 @@ def _collect_papers_ss(keyword, counts=3, tldr=False):
|
|
71 |
authors_str = " and ".join(authors)
|
72 |
try:
|
73 |
last_name = authors[0].split()[-1]
|
74 |
-
except:
|
75 |
last_name = "ma"
|
76 |
# pattern = r'^\w+'
|
77 |
# last_name = re.findall(pattern, authors[0])
|
@@ -79,7 +132,7 @@ def _collect_papers_ss(keyword, counts=3, tldr=False):
|
|
79 |
|
80 |
def parse_search_results(search_results_ss):
|
81 |
# turn the search result to a list of paper dictionary.
|
82 |
-
|
83 |
for raw_paper in search_results_ss:
|
84 |
if raw_paper["abstract"] is None:
|
85 |
continue
|
@@ -100,14 +153,14 @@ def _collect_papers_ss(keyword, counts=3, tldr=False):
|
|
100 |
result = {
|
101 |
"paper_id": paper_id,
|
102 |
"title": title,
|
103 |
-
"abstract": abstract,
|
104 |
"link": link,
|
105 |
"authors": authors_str,
|
106 |
"year": year_str,
|
107 |
"journal": journal
|
108 |
}
|
109 |
-
|
110 |
-
return
|
111 |
|
112 |
raw_results = ss_search(keyword, limit=counts)
|
113 |
if raw_results is not None:
|
@@ -192,13 +245,13 @@ def _collect_papers_arxiv(keyword, counts=3, tldr=False):
|
|
192 |
# References Class
|
193 |
######################################################################################################################
|
194 |
|
195 |
-
# Each `paper` is a dictionary containing (1) paper_id (2) title (3) authors (4) year (5) link (6) abstract (7) journal
|
196 |
class References:
|
197 |
def __init__(self, load_papers=""):
|
198 |
if load_papers:
|
199 |
-
# todo:
|
200 |
-
#
|
201 |
-
|
|
|
202 |
else:
|
203 |
self.papers = []
|
204 |
|
@@ -266,15 +319,20 @@ class References:
|
|
266 |
|
267 |
|
268 |
if __name__ == "__main__":
|
269 |
-
refs = References()
|
270 |
-
keywords_dict = {
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
}
|
277 |
-
refs.collect_papers(keywords_dict, method="ss", tldr=True)
|
278 |
-
for p in refs.papers:
|
279 |
-
|
280 |
-
print(len(refs.papers))
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Each `paper` is a dictionary containing:
|
2 |
+
# (1) paper_id (2) title (3) authors (4) year (5) link (6) abstract (7) journal
|
3 |
+
#
|
4 |
+
# Generate references:
|
5 |
+
# `Reference` class:
|
6 |
+
# 1. Read a given .bib file to collect papers; use `search_paper_abstract` method to fill missing abstract.
|
7 |
+
# 2. Given some keywords; use ArXiv or Semantic Scholar API to find papers.
|
8 |
+
# 3. Generate bibtex from the selected papers. --> to_bibtex()
|
9 |
+
# 4. Generate prompts from the selected papers: --> to_prompts()
|
10 |
+
# A sample prompt: {"paper_id": "paper summary"}
|
11 |
|
12 |
import requests
|
13 |
import re
|
14 |
+
import bibtexparser
|
15 |
+
from scholarly import scholarly
|
16 |
+
from scholarly import ProxyGenerator
|
17 |
|
18 |
|
19 |
######################################################################################################################
|
20 |
# Some basic tools
|
21 |
######################################################################################################################
|
22 |
def remove_newlines(serie):
|
23 |
+
# This function is applied to the abstract of each paper to reduce the length of prompts.
|
24 |
serie = serie.replace('\n', ' ')
|
25 |
serie = serie.replace('\\n', ' ')
|
26 |
serie = serie.replace(' ', ' ')
|
|
|
28 |
return serie
|
29 |
|
30 |
|
31 |
+
def search_paper_abstract(title):
|
32 |
+
pg = ProxyGenerator()
|
33 |
+
success = pg.ScraperAPI("921b16f94d701308b9d9b4456ddde155")
|
34 |
+
scholarly.use_proxy(pg)
|
35 |
+
# input the title of a paper, return its abstract
|
36 |
+
search_query = scholarly.search_pubs(title)
|
37 |
+
paper = next(search_query)
|
38 |
+
return remove_newlines(paper['bib']['abstract'])
|
39 |
+
|
40 |
+
|
41 |
+
def load_papers_from_bibtex(bib_file_path):
|
42 |
+
with open(bib_file_path) as bibtex_file:
|
43 |
+
bib_database = bibtexparser.load(bibtex_file)
|
44 |
+
if len(bib_database.entries) == 0:
|
45 |
+
return []
|
46 |
+
else:
|
47 |
+
bib_papers = []
|
48 |
+
for bibitem in bib_database.entries:
|
49 |
+
paper_id = bibitem.get("ID")
|
50 |
+
title = bibitem.get("title")
|
51 |
+
if title is None:
|
52 |
+
continue
|
53 |
+
journal = bibitem.get("journal")
|
54 |
+
year = bibitem.get("year")
|
55 |
+
author = bibitem.get("author")
|
56 |
+
abstract = bibitem.get("abstract")
|
57 |
+
if abstract is None:
|
58 |
+
abstract = search_paper_abstract(title)
|
59 |
+
result = {
|
60 |
+
"paper_id": paper_id,
|
61 |
+
"title": title,
|
62 |
+
"link": "",
|
63 |
+
"abstract": abstract,
|
64 |
+
"authors": author,
|
65 |
+
"year": year,
|
66 |
+
"journal": journal
|
67 |
+
}
|
68 |
+
bib_papers.append(result)
|
69 |
+
return bib_papers
|
70 |
+
|
71 |
+
|
72 |
######################################################################################################################
|
73 |
# Semantic Scholar (SS) API
|
74 |
######################################################################################################################
|
|
|
112 |
pattern = r'^\w+'
|
113 |
words = re.findall(pattern, title)
|
114 |
# return last_name + year_str + title.split(' ', 1)[0]
|
115 |
+
try:
|
116 |
+
output = last_name + year_str + words[0]
|
117 |
+
except IndexError:
|
118 |
+
output = last_name + year_str + title[:4]
|
119 |
+
return output
|
120 |
|
121 |
def extract_author_info(raw_authors):
|
122 |
authors = [author['name'] for author in raw_authors]
|
|
|
124 |
authors_str = " and ".join(authors)
|
125 |
try:
|
126 |
last_name = authors[0].split()[-1]
|
127 |
+
except IndexError:
|
128 |
last_name = "ma"
|
129 |
# pattern = r'^\w+'
|
130 |
# last_name = re.findall(pattern, authors[0])
|
|
|
132 |
|
133 |
def parse_search_results(search_results_ss):
|
134 |
# turn the search result to a list of paper dictionary.
|
135 |
+
papers_ss = []
|
136 |
for raw_paper in search_results_ss:
|
137 |
if raw_paper["abstract"] is None:
|
138 |
continue
|
|
|
153 |
result = {
|
154 |
"paper_id": paper_id,
|
155 |
"title": title,
|
156 |
+
"abstract": abstract,
|
157 |
"link": link,
|
158 |
"authors": authors_str,
|
159 |
"year": year_str,
|
160 |
"journal": journal
|
161 |
}
|
162 |
+
papers_ss.append(result)
|
163 |
+
return papers_ss
|
164 |
|
165 |
raw_results = ss_search(keyword, limit=counts)
|
166 |
if raw_results is not None:
|
|
|
245 |
# References Class
|
246 |
######################################################################################################################
|
247 |
|
|
|
248 |
class References:
|
249 |
def __init__(self, load_papers=""):
|
250 |
if load_papers:
|
251 |
+
# todo: (1) too large bibtex may make have issues on token limitations; may truncate to 5 or 10
|
252 |
+
# (2) google scholar didn't give a full abstract for some papers ...
|
253 |
+
# (3) may use langchain to support long input
|
254 |
+
self.papers = load_papers_from_bibtex(load_papers)
|
255 |
else:
|
256 |
self.papers = []
|
257 |
|
|
|
319 |
|
320 |
|
321 |
if __name__ == "__main__":
|
322 |
+
# refs = References()
|
323 |
+
# keywords_dict = {
|
324 |
+
# "Deep Q-Networks": 15,
|
325 |
+
# "Policy Gradient Methods": 24,
|
326 |
+
# "Actor-Critic Algorithms": 4,
|
327 |
+
# "Model-Based Reinforcement Learning": 13,
|
328 |
+
# "Exploration-Exploitation Trade-off": 7
|
329 |
+
# }
|
330 |
+
# refs.collect_papers(keywords_dict, method="ss", tldr=True)
|
331 |
+
# for p in refs.papers:
|
332 |
+
# print(p["paper_id"])
|
333 |
+
# print(len(refs.papers))
|
334 |
+
|
335 |
+
bib = "D:\\Projects\\auto-draft\\latex_templates\\pre_refs.bib"
|
336 |
+
papers = load_papers_from_bibtex(bib)
|
337 |
+
for paper in papers:
|
338 |
+
print(paper)
|
utils/tex_processing.py
CHANGED
@@ -2,16 +2,12 @@ import os
|
|
2 |
|
3 |
def replace_title(save_to_path, title):
|
4 |
# Define input and output file names
|
5 |
-
# input_file_name = save_to_path + "/template.tex"
|
6 |
-
# output_file_name = save_to_path + "/main.tex"
|
7 |
input_file_name = os.path.join(save_to_path, "template.tex")
|
8 |
output_file_name = os.path.join(save_to_path , "main.tex")
|
9 |
|
10 |
# Open the input file and read its content
|
11 |
with open(input_file_name, 'r') as infile:
|
12 |
content = infile.read()
|
13 |
-
|
14 |
-
# Replace all occurrences of "asdfgh" with "hahaha"
|
15 |
content = content.replace(r"\title{TITLE} ", f"\\title{{{title}}} ")
|
16 |
|
17 |
# Open the output file and write the modified content
|
@@ -19,11 +15,14 @@ def replace_title(save_to_path, title):
|
|
19 |
outfile.write(content)
|
20 |
|
21 |
|
22 |
-
# return all string in \cite{...}.
|
23 |
|
24 |
# check if citations are in bibtex.
|
25 |
|
26 |
|
27 |
# replace citations
|
28 |
|
29 |
-
# sometimes the output may include thebibliography and bibitem . remove all of it.
|
|
|
|
|
|
|
|
2 |
|
3 |
def replace_title(save_to_path, title):
|
4 |
# Define input and output file names
|
|
|
|
|
5 |
input_file_name = os.path.join(save_to_path, "template.tex")
|
6 |
output_file_name = os.path.join(save_to_path , "main.tex")
|
7 |
|
8 |
# Open the input file and read its content
|
9 |
with open(input_file_name, 'r') as infile:
|
10 |
content = infile.read()
|
|
|
|
|
11 |
content = content.replace(r"\title{TITLE} ", f"\\title{{{title}}} ")
|
12 |
|
13 |
# Open the output file and write the modified content
|
|
|
15 |
outfile.write(content)
|
16 |
|
17 |
|
18 |
+
# return all string in \cite{...} \citet{...} or \citep{...}.
|
19 |
|
20 |
# check if citations are in bibtex.
|
21 |
|
22 |
|
23 |
# replace citations
|
24 |
|
25 |
+
# sometimes the output may include thebibliography and bibitem . remove all of it.
|
26 |
+
|
27 |
+
|
28 |
+
|