auto-draft / utils /references.py
shaocongma
Add a generator wrapper using configuration file. Edit the logic of searching references. Add Gradio UI for testing Knowledge database.
94dc00e
raw
history blame
20.5 kB
# Each `paper` is a dictionary containing:
# (1) paper_id (2) title (3) authors (4) year (5) link (6) abstract (7) journal (8) embeddings
#
# Generate references:
# `Reference` class:
# 1. Two methods to load papers:
# 1.1. Read a given string including paper titles separated by `,`
# 1.2. Read a .bib file
# 2. Given some keywords; use Semantic Scholar API to find papers.
# 3. Generate bibtex from the selected papers. --> to_bibtex()
# 4. Generate prompts from the selected papers: --> to_prompts()
# A sample prompt: {"paper_id": "paper summary"}
# 5. Generate json from the selected papers. --> to_json()
import itertools
import json
import re
import uuid
from typing import Dict, List, Optional, Union
import arxiv
import bibtexparser
import numpy as np
import requests
import tiktoken
from numpy.linalg import norm
from scholarly import ProxyGenerator
from scholarly import scholarly
# used to evaluate embeddings
URL = "https://model-apis.semanticscholar.org/specter/v1/invoke"
MAX_BATCH_SIZE = 16
MAX_ATTEMPTS = 20
# `tokenizer`: used to count how many tokens
tokenizer_name = tiktoken.encoding_for_model('gpt-4')
tokenizer = tiktoken.get_encoding(tokenizer_name.name)
######################################################################################################################
# Some basic tools
######################################################################################################################
def remove_special_characters(s):
return ''.join(c for c in s if c.isalnum() or c.isspace() or c == ',')
def remove_newlines(serie):
# This function is applied to the abstract of each paper to reduce the length of prompts.
serie = serie.replace('\n', ' ')
serie = serie.replace('\\n', ' ')
serie = serie.replace(' ', ' ')
serie = serie.replace(' ', ' ')
return serie
def evaluate_cosine_similarity(v1, v2):
try:
return np.dot(v1, v2) / (norm(v1) * norm(v2))
except ValueError:
return 0.0
def chunks(lst, chunk_size=MAX_BATCH_SIZE):
"""Splits a longer list to respect batch size"""
for i in range(0, len(lst), chunk_size):
yield lst[i: i + chunk_size]
def embed(papers):
embeddings_by_paper_id: Dict[str, List[float]] = {}
for chunk in chunks(papers):
# Allow Python requests to convert the data above to JSON
response = requests.post(URL, json=chunk)
if response.status_code != 200:
raise RuntimeError("Sorry, something went wrong, please try later!")
for paper in response.json()["preds"]:
embeddings_by_paper_id[paper["paper_id"]] = paper["embedding"]
return embeddings_by_paper_id
def get_embeddings(paper_title, paper_description):
output = [{"title": paper_title, "abstract": paper_description, "paper_id": "target_paper"}]
emb_vector = embed(output)["target_paper"]
target_paper = output[0]
target_paper["embeddings"] = emb_vector
return target_paper
def get_embeddings_vector(paper_title, paper_description):
output = [{"title": paper_title, "abstract": paper_description, "paper_id": "target_paper"}]
emb_vector = embed(output)["target_paper"]
return emb_vector
def get_top_k(papers_dict, paper_title, paper_description, k=None):
# returns the top k papers most similar to the target paper
target_paper = get_embeddings(paper_title, paper_description)
papers = papers_dict # must include embeddings
# if k < len(papers_json), return k most relevant papers
# if k >= len(papers_json) or k is None, return all papers
max_num_papers = len(papers)
if k is None:
k = max_num_papers
num_papers = min(k, max_num_papers)
# evaluate the cosine similarity for each paper
target_embedding_vector = target_paper["embeddings"]
for k in papers:
v = papers[k]
embedding_vector = v["embeddings"]
cos_sim = evaluate_cosine_similarity(embedding_vector, target_embedding_vector)
papers[k]["cos_sim"] = cos_sim
# return the best k papers
sorted_papers = {k: v for k, v in sorted(papers.items(), key=lambda x: x[1]["cos_sim"], reverse=True)[:num_papers]}
for key in sorted_papers:
sorted_papers[key].pop("embeddings", None)
return sorted_papers
def search_paper_abstract(title):
pg = ProxyGenerator()
success = pg.FreeProxies() # pg.ScraperAPI("921b16f94d701308b9d9b4456ddde155")
if success:
try:
scholarly.use_proxy(pg)
# input the title of a paper, return its abstract
search_query = scholarly.search_pubs(title)
found_paper = next(search_query)
except:
return ""
else:
return ""
# raise RuntimeError("ScraperAPI fails.")
return remove_newlines(found_paper['bib']['abstract'])
def tiktoken_len(text):
# evaluate how many tokens for the given text
tokens = tokenizer.encode(text, disallowed_special=())
return len(tokens)
######################################################################################################################
# Academic search tools
######################################################################################################################
def externalIds2link(externalIds):
# Sample externalIds:
# "{'MAG': '2932819148', 'DBLP': 'conf/icml/HaarnojaZAL18', 'ArXiv': '1801.01290', 'CorpusId': 28202810}"
if externalIds:
# Supports ArXiv, MAG, ACL, PubMed, Medline, PubMedCentral, DBLP, DOI
# priority: DBLP > arXiv > (todo: MAG > CorpusId > DOI > ACL > PubMed > Mdeline > PubMedCentral)
# DBLP
dblp_id = externalIds.get('DBLP')
if dblp_id is not None:
dblp_link = f"dblp.org/rec/{dblp_id}"
return dblp_link
# arXiv
arxiv_id = externalIds.get('ArXiv')
if arxiv_id is not None:
arxiv_link = f"arxiv.org/abs/{arxiv_id}"
return arxiv_link
return ""
else:
# if this is an empty dictionary, return an empty string
return ""
def search_paper_arxiv(title):
search = arxiv.Search(
query=title,
max_results=1,
sort_by=arxiv.SortCriterion.Relevance
)
try:
# (1) paper_id (2) title (3) authors (4) year (5) link (6) abstract (7) journal (8) embeddings
result = next(search.results())
title = result.title
authors = " and ".join([author.name for author in result.authors])
year = str(result.updated.now().year)
link = result.pdf_url
abstract = result.summary
journal = f"Arxiv: {result.entry_id}"
paper_id = result.authors[0].name.replace(" ", "")[:4] + year + title[:6].replace(" ", "")
paper_id = paper_id.lower()
paper = {"paper_id": paper_id,
"title": title,
"authors": authors,
"year": year,
"link": link,
"abstract": abstract,
"journal": journal}
except StopIteration:
paper = {}
return paper
def search_paper_ss(title):
fields = ["title", "abstract", "venue", "year", "authors", "tldr", "externalIds"]
limit = 1
url = f'https://api.semanticscholar.org/graph/v1/paper/search?query={title}&limit={limit}&fields={",".join(fields)}'
# headers = {"Accept": "*/*", "x-api-key": constants.S2_KEY}
headers = {"Accept": "*/*"}
response = requests.get(url, headers=headers, timeout=30)
results = response.json()
if results['total'] == 0:
return {}
raw_paper = results['data'][0]
if raw_paper['tldr'] is not None:
abstract = raw_paper['tldr']['text']
elif raw_paper['abstract'] is not None:
abstract = remove_newlines(raw_paper['abstract'])
else:
abstract = ""
authors = [author['name'] for author in raw_paper['authors']]
authors_str = " and ".join(authors)
year_str = str(raw_paper['year'])
title = raw_paper['title']
paper_id = authors_str.replace(" ", "")[:4] + year_str + title[:6].replace(" ", "")
# some journal may contain &; replace it. e.g. journal={IEEE Power & Energy Society General Meeting}
journal = remove_special_characters(raw_paper['venue'])
if not journal:
journal = "arXiv preprint"
link = externalIds2link(raw_paper['externalIds'])
paper = {
"paper_id": paper_id,
"title": title,
"abstract": abstract,
"link": link,
"authors": authors_str,
"year": year_str,
"journal": journal
}
return paper
def search_paper_scrape(title):
pg = ProxyGenerator()
success = pg.ScraperAPI("921b16f94d701308b9d9b4456ddde155")
if success:
try:
scholarly.use_proxy(pg)
# input the title of a paper, return its abstract
search_query = scholarly.search_pubs(title)
found_paper = next(search_query)
url = found_paper['pub_url']
result = found_paper['bib']
title = result['title']
authors = " and ".join(result['author'])
year = str(result['pub_year'])
journal = result['pub_year']
abstract = result['abstract']
paper_id = authors.replace(" ", "")[:4] + year + title[:6].replace(" ", "")
paper = {
"paper_id": paper_id,
"title": title,
"abstract": abstract,
"link": url,
"authors": authors,
"year": year,
"journal": journal
}
return paper
except StopIteration:
return {}
def search_paper(title, verbose=True):
if verbose:
print(f"Searching {title}...")
# try Semantic Scholar first
paper = search_paper_ss(title)
if not paper:
paper = search_paper_arxiv(title)
if not paper:
paper = search_paper_scrape(title)
if paper:
paper["embeddings"] = get_embeddings_vector(paper_title=paper['title'], paper_description=paper['abstract'])
if verbose:
print(f"Search result: {paper}.")
return paper
def load_papers_from_bibtex(bib_file_path):
with open(bib_file_path) as bibtex_file:
bib_database = bibtexparser.load(bibtex_file)
if len(bib_database.entries) == 0:
return []
else:
bib_papers = []
for bibitem in bib_database.entries:
# Add each paper to `bib_papers`
paper_id = bibitem.get("ID")
title = bibitem.get("title")
if title is None:
continue
journal = bibitem.get("journal")
year = bibitem.get("year")
author = bibitem.get("author")
abstract = bibitem.get("abstract")
if abstract is None:
abstract = search_paper_abstract(title)
result = {
"paper_id": paper_id,
"title": title,
"link": "",
"abstract": abstract,
"authors": author,
"year": year,
"journal": journal
}
bib_papers.append(result)
return bib_papers
def load_papers_from_text(text):
# split text by comma
titles = [part.strip() for part in text.split(',')]
titles = [remove_special_characters(title) for title in titles]
papers = []
if len(titles) > 0:
for title in titles:
paper = search_paper(title)
if paper:
papers.append(paper)
return papers
else:
return []
######################################################################################################################
# Semantic Scholar (SS) API
######################################################################################################################
def ss_search(keywords, limit=20, fields=None):
# space between the query to be removed and replaced with +
if fields is None:
fields = ["title", "abstract", "venue", "year", "authors", "tldr", "embedding", "externalIds"]
keywords = keywords.lower()
keywords = keywords.replace(" ", "+")
url = f'https://api.semanticscholar.org/graph/v1/paper/search?query={keywords}&limit={limit}&fields={",".join(fields)} '
# headers = {"Accept": "*/*", "x-api-key": constants.S2_KEY}
headers = {"Accept": "*/*"}
response = requests.get(url, headers=headers, timeout=30)
return response.json()
def _collect_papers_ss(keyword, counts=3, tldr=False):
def extract_paper_id(last_name, year_str, title):
pattern = r'^\w+'
words = re.findall(pattern, title)
# return last_name + year_str + title.split(' ', 1)[0]
try:
output = last_name + year_str + words[0]
except IndexError:
output = last_name + year_str + title[:4]
return output
def extract_author_info(raw_authors):
authors = [author['name'] for author in raw_authors]
authors_str = " and ".join(authors)
try:
last_name = authors[0].split()[-1]
last_name = last_name.replace("'", "")
except IndexError:
last_name = "ma"
# pattern = r'^\w+'
# last_name = re.findall(pattern, authors[0])
return authors_str, last_name
def parse_search_results(search_results_ss):
if len(search_results_ss) == 0:
return []
# turn the search result to a list of paper dictionary.
papers_ss = []
for raw_paper in search_results_ss:
if raw_paper["abstract"] is None:
continue
authors_str, last_name = extract_author_info(raw_paper['authors'])
year_str = str(raw_paper['year'])
title = raw_paper['title']
# some journal may contain &; replace it. e.g. journal={IEEE Power & Energy Society General Meeting}
journal = raw_paper['venue'].replace("&", "\\&")
if not journal:
journal = "arXiv preprint"
paper_id = extract_paper_id(last_name, year_str, title).lower()
link = externalIds2link(raw_paper['externalIds'])
if tldr and raw_paper['tldr'] is not None:
abstract = raw_paper['tldr']['text']
else:
abstract = remove_newlines(raw_paper['abstract'])
# some papers have no embeddings; handle this case
embeddings_dict = raw_paper.get('embedding')
if embeddings_dict is None:
continue
else:
embeddings = raw_paper['embedding']['vector']
result = {
"paper_id": paper_id,
"title": title,
"abstract": abstract,
"link": link,
"authors": authors_str,
"year": year_str,
"journal": journal,
"embeddings": embeddings
}
papers_ss.append(result)
return papers_ss
raw_results = ss_search(keyword, limit=counts)
if raw_results is not None:
search_results = raw_results.get("data")
if search_results is None:
search_results = []
else:
search_results = []
results = parse_search_results(search_results)
return results
######################################################################################################################
# References Class
######################################################################################################################
class References:
def __init__(self,
title: str,
load_papers: Optional[str] = None,
load_bibtex: Optional[str] = None,
description: str = ""
):
self.papers = {}
if load_bibtex is not None:
self.papers["load_from_bibtex"] = load_papers_from_bibtex(load_bibtex)
if load_papers is not None:
self.papers["load_from_text"] = load_papers_from_text(load_papers)
self.title = title
self.description = description
def generate_keywords_dict(self) -> Dict[str, int]:
keywords_dict = {}
for k in self.papers:
keywords_dict[k] = len(self.papers[k])
return keywords_dict
def collect_papers(self, keywords_dict: Dict[str, int], tldr: bool = False) -> None:
"""
Collect as many papers as possible
keywords_dict:
{"machine learning": 5, "language model": 2};
the first is the keyword, the second is how many references are needed.
"""
keywords = list(keywords_dict)
comb_keywords = list(itertools.combinations(keywords, 2))
for comb_keyword in comb_keywords:
keywords.append(" ".join(comb_keyword))
for key in keywords:
self.papers[key] = _collect_papers_ss(key, 10, tldr)
def to_bibtex(self, path_to_bibtex: str = "ref.bib") -> List[str]:
"""
Turn the saved paper list into bibtex file "ref.bib". Return a list of all `paper_id`.
"""
papers = self._get_papers(keyword="_all")
num_papers = len(papers)
print(f"{num_papers} papers will be added to `ref.bib`.")
# clear the bibtex file
with open(path_to_bibtex, "w", encoding="utf-8") as file:
file.write("")
bibtex_entries = []
paper_ids = []
seen = set()
for paper in papers:
if paper["paper_id"] in seen:
continue
else:
seen.add(paper["paper_id"])
bibtex_entry = f"""@article{{{paper["paper_id"]},
title = {{{paper["title"]}}},
author = {{{paper["authors"]}}},
journal={{{paper["journal"]}}},
year = {{{paper["year"]}}},
url = {{{paper["link"]}}}
}}"""
bibtex_entries.append(bibtex_entry)
paper_ids.append(paper["paper_id"])
# Save the generated BibTeX entries to a file
with open(path_to_bibtex, "a", encoding="utf-8") as file:
file.write(bibtex_entry)
file.write("\n\n")
# print(f'{paper["paper_id"]} has been added to `ref.bib`.')
return paper_ids
def _get_papers(self, keyword="_all"):
if keyword == "_all":
papers = []
for k, v in self.papers.items():
papers = papers + v
else:
papers = self.papers["keyword"]
return papers
def to_prompts(self, keyword: str = "_all", max_tokens: int = 2048):
# `prompts`:
# {"paper1_bibtex_id": "paper_1_abstract", "paper2_bibtex_id": "paper2_abstract"}
# this will be used to instruct GPT model to cite the correct bibtex entry.
# two steps:
# 1. Sort everything from most relevant to less relevant
# 2. Add paper to prompts until max_tokens
json_path = str(uuid.uuid1()) + ".json"
papers_json = self.to_json()
with open(json_path, "w") as f:
json.dump(papers_json, f)
try:
# Use external API to obtain the most relevant papers
title = self.title
description = self.description
result = get_top_k(papers_json, title, description)
result = [item for key, item in result.items()]
except Exception as e:
print(f"Error occurs during calling external API: {e}\n")
print("Use default method instead!")
result = self._get_papers(keyword)
prompts = {}
tokens = 0
for paper in result:
abstract = paper.get("abstract")
if abstract is not None and isinstance(abstract, str):
prompts[paper["paper_id"]] = paper["abstract"]
tokens += tiktoken_len(paper["abstract"])
else:
prompts[paper["paper_id"]] = " "
if tokens >= max_tokens:
break
return prompts
def to_json(self, keyword: str = "_all"):
papers = self._get_papers(keyword)
papers_json = {}
for paper in papers:
papers_json[paper["paper_id"]] = paper
return papers_json