Spaces:
Running
Running
\begin{thebibliography}{10} | |
\providecommand{\natexlab}[1]{#1} | |
\providecommand{\url}[1]{\texttt{#1}} | |
\expandafter\ifx\csname urlstyle\endcsname\relax | |
\providecommand{\doi}[1]{doi: #1}\else | |
\providecommand{\doi}{doi: \begingroup \urlstyle{rm}\Url}\fi | |
\bibitem[Akshita~Mittel(2018)]{1809.00397} | |
Himanshi~Yadav Akshita~Mittel, Sowmya~Munukutla. | |
\newblock Visual transfer between atari games using competitive reinforcement | |
learning. | |
\newblock \emph{arXiv preprint arXiv:1809.00397}, 2018. | |
\newblock URL \url{http://arxiv.org/abs/1809.00397v1}. | |
\bibitem[Kai~Arulkumaran(2017)]{1708.05866} | |
Miles Brundage Anil Anthony~Bharath Kai~Arulkumaran, Marc Peter~Deisenroth. | |
\newblock A brief survey of deep reinforcement learning. | |
\newblock \emph{arXiv preprint arXiv:1708.05866}, 2017. | |
\newblock URL \url{http://arxiv.org/abs/1708.05866v2}. | |
\bibitem[Kenny~Young(2019)]{1903.03176} | |
Tian~Tian Kenny~Young. | |
\newblock Minatar: An atari-inspired testbed for thorough and reproducible | |
reinforcement learning experiments. | |
\newblock \emph{arXiv preprint arXiv:1903.03176}, 2019. | |
\newblock URL \url{http://arxiv.org/abs/1903.03176v2}. | |
\bibitem[Li~Meng(2021)]{2106.14642} | |
Morten Goodwin Paal~Engelstad Li~Meng, Anis~Yazidi. | |
\newblock Expert q-learning: Deep reinforcement learning with coarse state | |
values from offline expert examples. | |
\newblock \emph{arXiv preprint arXiv:2106.14642}, 2021. | |
\newblock URL \url{http://arxiv.org/abs/2106.14642v3}. | |
\bibitem[Mahipal~Jadeja(2017)]{1709.05067} | |
Agam~Shah Mahipal~Jadeja, Neelanshi~Varia. | |
\newblock Deep reinforcement learning for conversational ai. | |
\newblock \emph{arXiv preprint arXiv:1709.05067}, 2017. | |
\newblock URL \url{http://arxiv.org/abs/1709.05067v1}. | |
\bibitem[Ngan~Le(2021)]{2108.11510} | |
Kashu Yamazaki Khoa Luu Marios~Savvides Ngan~Le, Vidhiwar Singh~Rathour. | |
\newblock Deep reinforcement learning in computer vision: A comprehensive | |
survey. | |
\newblock \emph{arXiv preprint arXiv:2108.11510}, 2021. | |
\newblock URL \url{http://arxiv.org/abs/2108.11510v1}. | |
\bibitem[Qiyue~Yin(2022)]{2212.00253} | |
Shengqi Shen Jun Yang Meijing Zhao Kaiqi Huang Bin Liang Liang~Wang Qiyue~Yin, | |
Tongtong~Yu. | |
\newblock Distributed deep reinforcement learning: A survey and a multi-player | |
multi-agent learning toolbox. | |
\newblock \emph{arXiv preprint arXiv:2212.00253}, 2022. | |
\newblock URL \url{http://arxiv.org/abs/2212.00253v1}. | |
\bibitem[Russell~Kaplan(2017)]{1704.05539} | |
Alexander~Sosa Russell~Kaplan, Christopher~Sauer. | |
\newblock Beating atari with natural language guided reinforcement learning. | |
\newblock \emph{arXiv preprint arXiv:1704.05539}, 2017. | |
\newblock URL \url{http://arxiv.org/abs/1704.05539v1}. | |
\bibitem[Sergey~Ivanov(2019)]{1906.10025} | |
Alexander~D'yakonov Sergey~Ivanov. | |
\newblock Modern deep reinforcement learning algorithms. | |
\newblock \emph{arXiv preprint arXiv:1906.10025}, 2019. | |
\newblock URL \url{http://arxiv.org/abs/1906.10025v2}. | |
\bibitem[Yang~Shao(2022)]{2203.16777} | |
Tadayuki Matsumura Taiki Fuji Kiyoto Ito Hiroyuki~Mizuno Yang~Shao, Quan~Kong. | |
\newblock Mask atari for deep reinforcement learning as pomdp benchmarks. | |
\newblock \emph{arXiv preprint arXiv:2203.16777}, 2022. | |
\newblock URL \url{http://arxiv.org/abs/2203.16777v1}. | |
\end{thebibliography} | |