auto-draft / auto_backgrounds.py
shaocongma
Bug fix.
295e94f
raw
history blame
5.66 kB
import os.path
from utils.references import References
from utils.file_operations import hash_name, make_archive, copy_templates
from section_generator import section_generation_bg, keywords_generation, figures_generation, section_generation
import logging
import time
TOTAL_TOKENS = 0
TOTAL_PROMPTS_TOKENS = 0
TOTAL_COMPLETION_TOKENS = 0
def log_usage(usage, generating_target, print_out=True):
global TOTAL_TOKENS
global TOTAL_PROMPTS_TOKENS
global TOTAL_COMPLETION_TOKENS
prompts_tokens = usage['prompt_tokens']
completion_tokens = usage['completion_tokens']
total_tokens = usage['total_tokens']
TOTAL_TOKENS += total_tokens
TOTAL_PROMPTS_TOKENS += prompts_tokens
TOTAL_COMPLETION_TOKENS += completion_tokens
message = f"For generating {generating_target}, {total_tokens} tokens have been used ({prompts_tokens} for prompts; {completion_tokens} for completion). " \
f"{TOTAL_TOKENS} tokens have been used in total."
if print_out:
print(message)
logging.info(message)
def _generation_setup(title, description="", template="ICLR2022", model="gpt-4",
search_engine="ss", tldr=False, max_kw_refs=10):
'''
todo: use `model` to control which model to use; may use another method to generate keywords or collect references
'''
paper = {}
paper_body = {}
# Create a copy in the outputs folder.
bibtex_path, destination_folder = copy_templates(template, title)
logging.basicConfig(level=logging.INFO, filename=os.path.join(destination_folder, "generation.log") )
# Generate keywords and references
print("Initialize the paper information ...")
input_dict = {"title": title, "description": description}
keywords, usage = keywords_generation(input_dict, model="gpt-3.5-turbo", max_kw_refs=max_kw_refs)
print(f"keywords: {keywords}")
log_usage(usage, "keywords")
ref = References(load_papers="")
ref.collect_papers(keywords, method=search_engine, tldr=tldr)
all_paper_ids = ref.to_bibtex(bibtex_path) # todo: this will used to check if all citations are in this list
print(f"The paper information has been initialized. References are saved to {bibtex_path}.")
paper["title"] = title
paper["description"] = description
paper["references"] = ref.to_prompts()
paper["body"] = paper_body
paper["bibtex"] = bibtex_path
return paper, destination_folder, all_paper_ids
def generate_backgrounds(title, description="", template="ICLR2022", model="gpt-4"):
paper, destination_folder, _ = _generation_setup(title, description, template, model)
for section in ["introduction", "related works", "backgrounds"]:
try:
usage = section_generation_bg(paper, section, destination_folder, model=model)
log_usage(usage, section)
except Exception as e:
message = f"Failed to generate {section}. {type(e).__name__} was raised: {e}"
print(message)
logging.info(message)
print(f"The paper '{title}' has been generated. Saved to {destination_folder}.")
input_dict = {"title": title, "description": description, "generator": "generate_backgrounds"}
filename = hash_name(input_dict) + ".zip"
return make_archive(destination_folder, filename)
def fake_generator(title, description="", template="ICLR2022", model="gpt-4"):
"""
This function is used to test the whole pipeline without calling OpenAI API.
"""
input_dict = {"title": title, "description": description, "generator": "generate_draft"}
filename = hash_name(input_dict) + ".zip"
return make_archive("sample-output.pdf", filename)
def generate_draft(title, description="", template="ICLR2022", model="gpt-4", search_engine="ss", tldr=True, max_kw_refs=10):
paper, destination_folder, _ = _generation_setup(title, description, template, model, search_engine, tldr, max_kw_refs)
# todo: `list_of_methods` failed to be generated; find a solution ...
# print("Generating figures ...")
# usage = figures_generation(paper, destination_folder, model="gpt-3.5-turbo")
# log_usage(usage, "figures")
# for section in ["introduction", "related works", "backgrounds", "methodology", "experiments", "conclusion", "abstract"]:
for section in ["introduction", "related works", "backgrounds", "abstract"]:
try:
usage = section_generation(paper, section, destination_folder, model=model)
log_usage(usage, section)
except Exception as e:
message = f"Failed to generate {section}. {type(e).__name__} was raised: {e}"
print(message)
logging.info(message)
max_attempts = 2
# todo: make this part more compact
# re-try `max_attempts` time
for i in range(max_attempts):
time.sleep(20)
try:
usage = section_generation(paper, section, destination_folder, model=model)
log_usage(usage, section)
e = None
except Exception as e:
pass
if e is None:
break
input_dict = {"title": title, "description": description, "generator": "generate_draft"}
filename = hash_name(input_dict) + ".zip"
return make_archive(destination_folder, filename)
if __name__ == "__main__":
title = "Using interpretable boosting algorithms for modeling environmental and agricultural data"
description = ""
output = generate_draft(title, description, search_engine="ss", tldr=True, max_kw_refs=10)
print(output)