File size: 3,220 Bytes
238735e
a0d1776
 
238735e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0d1776
238735e
 
 
 
a0d1776
 
238735e
 
 
a0d1776
 
 
238735e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0d1776
 
238735e
 
 
a0d1776
8aec19e
a0d1776
 
 
 
238735e
1b82d4c
a0d1776
1b82d4c
 
 
a0d1776
 
1b82d4c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
from utils.references import References
from utils.file_operations import hash_name, make_archive, copy_templates
from section_generator import section_generation_bg, keywords_generation
import logging

TOTAL_TOKENS = 0
TOTAL_PROMPTS_TOKENS = 0
TOTAL_COMPLETION_TOKENS = 0

def log_usage(usage, generating_target, print_out=True):
    global TOTAL_TOKENS
    global TOTAL_PROMPTS_TOKENS
    global TOTAL_COMPLETION_TOKENS

    prompts_tokens = usage['prompt_tokens']
    completion_tokens = usage['completion_tokens']
    total_tokens = usage['total_tokens']

    TOTAL_TOKENS += total_tokens
    TOTAL_PROMPTS_TOKENS += prompts_tokens
    TOTAL_COMPLETION_TOKENS += completion_tokens

    message = f"For generating {generating_target}, {total_tokens} tokens have been used ({prompts_tokens} for prompts; {completion_tokens} for completion). " \
              f"{TOTAL_TOKENS} tokens have been used in total."
    if print_out:
        print(message)
    logging.info(message)

def generate_backgrounds(title, description="", template="ICLR2022", model="gpt-4"):
    paper = {}
    paper_body = {}

    # Create a copy in the outputs folder.
    bibtex_path, destination_folder = copy_templates(template, title)
    logging.basicConfig(level=logging.INFO, filename=destination_folder + "/generation.log")

    # Generate keywords and references
    print("Initialize the paper information ...")
    input_dict = {"title": title, "description": description}
    keywords, usage = keywords_generation(input_dict, model="gpt-3.5-turbo")
    print(f"keywords: {keywords}")
    log_usage(usage, "keywords")

    ref = References(load_papers = "")
    ref.collect_papers(keywords, method="arxiv")
    all_paper_ids = ref.to_bibtex(bibtex_path) #todo: this will used to check if all citations are in this list

    print(f"The paper information has been initialized. References are saved to {bibtex_path}.")

    paper["title"] = title
    paper["description"] = description
    paper["references"] = ref.to_prompts() # to_prompts(top_papers)
    paper["body"] = paper_body
    paper["bibtex"] = bibtex_path

    for section in ["introduction", "related works", "backgrounds"]:
        try:
            # usage = pipeline(paper, section, destination_folder, model=model)
            usage = section_generation_bg(paper, section, destination_folder, model=model)
            log_usage(usage, section)
        except Exception as e:
            print(f"Failed to generate {section} due to the error: {e}")
    print(f"The paper {title} has been generated. Saved to {destination_folder}.")
    # shutil.make_archive("output.zip", 'zip', save_to_path)

    input_dict = {"title": title, "description": description, "generator": "generate_backgrounds"}
    filename = hash_name(input_dict) + ".zip"
    return make_archive(destination_folder, filename)


def fake_generator(title, description="", template="ICLR2022", model="gpt-4"):
    """
    This function is used to test the whole pipeline without calling OpenAI API.
    """
    input_dict = {"title": title, "description": description, "generator": "generate_backgrounds"}
    filename = hash_name(input_dict) + ".zip"
    return make_archive("sample-output.pdf", filename)