asoria's picture
asoria HF staff
Update app.py
fbc19a1 verified
import os
import duckdb
import gradio as gr
from httpx import Client
from huggingface_hub import HfApi
import pandas as pd
from gradio_huggingfacehub_search import HuggingfaceHubSearch
import spaces
from llama_cpp import Llama
BASE_DATASETS_SERVER_URL = "/static-proxy?url=https%3A%2F%2Fdatasets-server.huggingface.co%26quot%3B%3C%2Fspan%3E%3C!-- HTML_TAG_END -->
headers = {
"Accept" : "application/json",
"Content-Type": "application/json"
}
client = Client(headers=headers)
api = HfApi()
llama = Llama(
model_path="DuckDB-NSQL-7B-v0.1-q8_0.gguf",
n_ctx=2048,
n_gpu_layers=50
)
@spaces.GPU
def generate_sql(prompt):
# pred = pipe(prompt, max_length=1000)
# return pred[0]["generated_text"]
pred = llama(prompt, temperature=0.1, max_tokens=1000)
return pred["choices"][0]["text"]
def get_first_parquet(dataset: str):
resp = client.get(f"{BASE_DATASETS_SERVER_URL}/parquet?dataset={dataset}")
return resp.json()["parquet_files"][0]
def text2sql(dataset_name, query_input):
print(f"start text2sql for {dataset_name}")
try:
first_parquet = get_first_parquet(dataset_name)
except Exception as error:
return {
schema_output: "",
prompt_output: "",
query_output: "",
df:pd.DataFrame([{"error": f"❌ Could not get dataset schema. {error=}"}])
}
first_parquet_url = first_parquet["url"]
print(f"getting schema from {first_parquet_url}")
con = duckdb.connect()
con.execute("INSTALL 'httpfs'; LOAD httpfs;")
# could get from Parquet instead?
con.execute(f"CREATE TABLE data as SELECT * FROM '{first_parquet_url}' LIMIT 1;")
result = con.sql("SELECT sql FROM duckdb_tables() where table_name ='data';").df()
ddl_create = result.iloc[0,0]
text = f"""### Instruction:
Your task is to generate valid duckdb SQL to answer the following question.
### Input:
Here is the database schema that the SQL query will run on:
{ddl_create}
### Question:
{query_input}
### Response (use duckdb shorthand if possible):
"""
try:
sql_output = generate_sql(text)
except Exception as error:
return {
schema_output: ddl_create,
prompt_output: text,
query_output: "",
df:pd.DataFrame([{"error": f"❌ Unable to get the SQL query based on the text. {error=}"}])
}
# Should be replaced by the prompt but not working
sql_output = sql_output.replace("FROM data", f"FROM '{first_parquet_url}'")
try:
query_result = con.sql(sql_output).df()
except Exception as error:
query_result = pd.DataFrame([{"error": f"❌ Could not execute SQL query {error=}"}])
finally:
con.close()
return {
schema_output: ddl_create,
prompt_output: text,
query_output:sql_output,
df:query_result
}
with gr.Blocks() as demo:
gr.Markdown("# πŸ’« Generate SQL queries based on a given text for your Hugging Face Dataset πŸ’«")
dataset_name = HuggingfaceHubSearch(
label="Hub Dataset ID",
placeholder="Search for dataset id on Huggingface",
search_type="dataset",
value="jamescalam/world-cities-geo",
)
# dataset_name = gr.Textbox("jamescalam/world-cities-geo", label="Dataset Name")
query_input = gr.Textbox("Cities from Albania country", label="Ask something about your data")
examples = [
["Cities from Albania country"],
["The continent with the most number of countries"],
["Cities that start with 'A'"],
["Cities by region"],
]
gr.Examples(examples=examples, inputs=[query_input],outputs=[])
btn = gr.Button("Generate SQL")
query_output = gr.Textbox(label="Output SQL", interactive= False)
df = gr.DataFrame(datatype="markdown")
with gr.Accordion("Open for prompt details", open=False):
#with gr.Column(scale=1, min_width=600):
schema_output = gr.Textbox(label="Parquet Schema as CREATE DDL", interactive= False)
prompt_output = gr.Textbox(label="Generated prompt", interactive= False)
btn.click(text2sql, inputs=[dataset_name, query_input], outputs=[schema_output, prompt_output, query_output,df])
demo.launch(debug=True)