Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import duckdb | |
import gradio as gr | |
from httpx import Client | |
from huggingface_hub import HfApi | |
import pandas as pd | |
from gradio_huggingfacehub_search import HuggingfaceHubSearch | |
import spaces | |
from llama_cpp import Llama | |
BASE_DATASETS_SERVER_URL = "/static-proxy?url=https%3A%2F%2Fdatasets-server.huggingface.co%26quot%3B%3C%2Fspan%3E%3C!-- HTML_TAG_END --> | |
headers = { | |
"Accept" : "application/json", | |
"Content-Type": "application/json" | |
} | |
client = Client(headers=headers) | |
api = HfApi() | |
llama = Llama( | |
model_path="DuckDB-NSQL-7B-v0.1-q8_0.gguf", | |
n_ctx=2048, | |
n_gpu_layers=50 | |
) | |
def generate_sql(prompt): | |
# pred = pipe(prompt, max_length=1000) | |
# return pred[0]["generated_text"] | |
pred = llama(prompt, temperature=0.1, max_tokens=1000) | |
return pred["choices"][0]["text"] | |
def get_first_parquet(dataset: str): | |
resp = client.get(f"{BASE_DATASETS_SERVER_URL}/parquet?dataset={dataset}") | |
return resp.json()["parquet_files"][0] | |
def text2sql(dataset_name, query_input): | |
print(f"start text2sql for {dataset_name}") | |
try: | |
first_parquet = get_first_parquet(dataset_name) | |
except Exception as error: | |
return { | |
schema_output: "", | |
prompt_output: "", | |
query_output: "", | |
df:pd.DataFrame([{"error": f"β Could not get dataset schema. {error=}"}]) | |
} | |
first_parquet_url = first_parquet["url"] | |
print(f"getting schema from {first_parquet_url}") | |
con = duckdb.connect() | |
con.execute("INSTALL 'httpfs'; LOAD httpfs;") | |
# could get from Parquet instead? | |
con.execute(f"CREATE TABLE data as SELECT * FROM '{first_parquet_url}' LIMIT 1;") | |
result = con.sql("SELECT sql FROM duckdb_tables() where table_name ='data';").df() | |
ddl_create = result.iloc[0,0] | |
text = f"""### Instruction: | |
Your task is to generate valid duckdb SQL to answer the following question. | |
### Input: | |
Here is the database schema that the SQL query will run on: | |
{ddl_create} | |
### Question: | |
{query_input} | |
### Response (use duckdb shorthand if possible): | |
""" | |
try: | |
sql_output = generate_sql(text) | |
except Exception as error: | |
return { | |
schema_output: ddl_create, | |
prompt_output: text, | |
query_output: "", | |
df:pd.DataFrame([{"error": f"β Unable to get the SQL query based on the text. {error=}"}]) | |
} | |
# Should be replaced by the prompt but not working | |
sql_output = sql_output.replace("FROM data", f"FROM '{first_parquet_url}'") | |
try: | |
query_result = con.sql(sql_output).df() | |
except Exception as error: | |
query_result = pd.DataFrame([{"error": f"β Could not execute SQL query {error=}"}]) | |
finally: | |
con.close() | |
return { | |
schema_output: ddl_create, | |
prompt_output: text, | |
query_output:sql_output, | |
df:query_result | |
} | |
with gr.Blocks() as demo: | |
gr.Markdown("# π« Generate SQL queries based on a given text for your Hugging Face Dataset π«") | |
dataset_name = HuggingfaceHubSearch( | |
label="Hub Dataset ID", | |
placeholder="Search for dataset id on Huggingface", | |
search_type="dataset", | |
value="jamescalam/world-cities-geo", | |
) | |
# dataset_name = gr.Textbox("jamescalam/world-cities-geo", label="Dataset Name") | |
query_input = gr.Textbox("Cities from Albania country", label="Ask something about your data") | |
examples = [ | |
["Cities from Albania country"], | |
["The continent with the most number of countries"], | |
["Cities that start with 'A'"], | |
["Cities by region"], | |
] | |
gr.Examples(examples=examples, inputs=[query_input],outputs=[]) | |
btn = gr.Button("Generate SQL") | |
query_output = gr.Textbox(label="Output SQL", interactive= False) | |
df = gr.DataFrame(datatype="markdown") | |
with gr.Accordion("Open for prompt details", open=False): | |
#with gr.Column(scale=1, min_width=600): | |
schema_output = gr.Textbox(label="Parquet Schema as CREATE DDL", interactive= False) | |
prompt_output = gr.Textbox(label="Generated prompt", interactive= False) | |
btn.click(text2sql, inputs=[dataset_name, query_input], outputs=[schema_output, prompt_output, query_output,df]) | |
demo.launch(debug=True) | |