File size: 5,942 Bytes
39f0f76
 
e6bb5bf
39f0f76
 
e6bb5bf
39f0f76
 
 
e6bb5bf
39f0f76
e6bb5bf
 
39f0f76
e6bb5bf
39f0f76
e6bb5bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39f0f76
e6bb5bf
 
 
 
 
 
 
 
 
 
 
 
 
 
39f0f76
e6bb5bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a80b42
e6bb5bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39f0f76
e6bb5bf
 
39f0f76
e6bb5bf
 
39f0f76
e6bb5bf
 
 
 
6db2521
e6bb5bf
 
 
 
 
 
 
 
39f0f76
e6bb5bf
 
 
 
 
39f0f76
e6bb5bf
 
 
 
39f0f76
e6bb5bf
 
 
 
39f0f76
 
e6bb5bf
 
2a80b42
e6bb5bf
39f0f76
e6bb5bf
 
39f0f76
42a85d0
 
 
e6bb5bf
 
39f0f76
42a85d0
e6bb5bf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# Inspired by https://huggingface.co/spaces/davanstrien/dataset_column_search

import os
from functools import lru_cache
from urllib.parse import quote

import faiss
import gradio as gr
import numpy as np
import pandas as pd
from dotenv import load_dotenv
from httpx import Client
from huggingface_hub import HfApi
from huggingface_hub.utils import logging
from sentence_transformers import SentenceTransformer
from tqdm.contrib.concurrent import thread_map

load_dotenv()

HF_TOKEN = os.getenv("HF_TOKEN")
assert HF_TOKEN is not None, "You need to set HF_TOKEN in your environment variables"

BASE_DATASETS_SERVER_URL = "/static-proxy?url=https%3A%2F%2Fdatasets-server.huggingface.co%26quot%3B%3C%2Fspan%3E

logger = logging.get_logger(__name__)
headers = {
    "authorization": f"Bearer ${HF_TOKEN}",
}
client = Client(headers=headers)
api = HfApi(token=HF_TOKEN)


def get_first_config_name(dataset: str):
    try:
        resp = client.get(f"{BASE_DATASETS_SERVER_URL}/splits?dataset={dataset}")
        data = resp.json()
        return data["splits"][0]["config"][0]
    except Exception as e:
        logger.error(f"Failed to get splits for {dataset}: {e}")
        return None


def datasets_server_valid_rows(dataset: str):
    try:
        resp = client.get(f"{BASE_DATASETS_SERVER_URL}/is-valid?dataset={dataset}")
        return resp.json()["viewer"]
    except Exception as e:
        logger.error(f"Failed to get is-valid for {dataset}: {e}")
        return None


def dataset_is_valid(dataset):
    return dataset if datasets_server_valid_rows(dataset.id) else None


def get_first_config_and_split_name(hub_id: str):
    try:
        resp = client.get(f"/static-proxy?url=https%3A%2F%2Fdatasets-server.huggingface.co%2Fsplits%3Fdataset%3D%3Cspan class="hljs-subst">{hub_id}")
        data = resp.json()
        return data["splits"][0]["config"], data["splits"][0]["split"]
    except Exception as e:
        logger.error(f"Failed to get splits for {hub_id}: {e}")
        return None


def get_dataset_info(hub_id: str, config: str | None = None):
    if config is None:
        config = get_first_config_and_split_name(hub_id)
        if config is None:
            return None
        else:
            config = config[0]
    resp = client.get(f"{BASE_DATASETS_SERVER_URL}/info?dataset={hub_id}&config={config}")
    resp.raise_for_status()
    return resp.json()


def dataset_with_info(dataset):
    try:
        if info := get_dataset_info(dataset.id):
            columns = info.get("dataset_info", {}).get("features", {})
            if columns is not None:
                return {
                    "dataset": dataset.id,
                    "column_names": ','.join(list(columns.keys())),
                    "text": f"{dataset.id}-{','.join(list(columns.keys()))}",
                    "likes": dataset.likes,
                    "downloads": dataset.downloads,
                    "created_at": dataset.created_at,
                    "tags": dataset.tags,
                    "text": f"{str(dataset.id).split('/')[-1]}-{','.join(list(columns.keys()))}",
                }
    except Exception as e:
        logger.error(f"Failed to get info for {dataset.id}: {e}")
        return None


@lru_cache(maxsize=100)
def prep_data():
    datasets = list(api.list_datasets(limit=None, sort="createdAt", direction=-1))
    print(f"Found {len(datasets)} datasets in the hub.")
    has_server = thread_map(
        dataset_is_valid,
        datasets,
    )
    datasets_with_server = [x for x in has_server if x is not None]
    print(f"Found {len(datasets_with_server)} valid datasets.")
    dataset_infos = thread_map(dataset_with_info, datasets_with_server)
    dataset_infos = [x for x in dataset_infos if x is not None]
    print(f"Found {len(dataset_infos)} datasets with info.")
    return dataset_infos


all_datasets = prep_data()
all_datasets_df = pd.DataFrame.from_dict(all_datasets)
print(all_datasets_df.head())
text = all_datasets_df['text']
encoder = SentenceTransformer("Snowflake/snowflake-arctic-embed-s")
vectors = encoder.encode(text)
vector_dimension = vectors.shape[1]
print("Start indexing")
index = faiss.IndexFlatL2(vector_dimension)
faiss.normalize_L2(vectors)
index.add(vectors)
print("Indexing done")


def render_model_hub_link(hub_id):
    link = f"https://huggingface.co/datasets/{quote(hub_id)}"
    return f'<a target="_blank" href="{link}"  style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{hub_id}</a>'


def search(dataset_name, k):
    print(f"start search for {dataset_name}")
    try:
        dataset_row = all_datasets_df[all_datasets_df.dataset == dataset_name].iloc[0]
    except IndexError:
        return pd.DataFrame([{"error": "❌ Dataset does not exist or is not supported"}])
    text = dataset_row["text"]
    search_vector = encoder.encode(text)
    _vector = np.array([search_vector])
    faiss.normalize_L2(_vector)
    distances, ann = index.search(_vector, k=k)
    results = pd.DataFrame({"distances": distances[0], "ann": ann[0]})
    merge = pd.merge(results, all_datasets_df, left_on="ann", right_index=True)
    merge["dataset"] = merge["dataset"].apply(render_model_hub_link)
    return merge.drop("text", axis=1)


with gr.Blocks() as demo:
    gr.Markdown("# Search similar Datasets on Hugging Face")
    gr.Markdown("This space shows similar datasets based on a name and columns. It uses https://github.com/facebookresearch/faiss for vector indexing.")
    gr.Markdown("'Text' column was used for indexing. Where text is a concatenation of 'dataset_name'-'column_names'")
    dataset_name = gr.Textbox("sksayril/medicine-info", label="Dataset Name")
    k = gr.Slider(5, 200, 20, step=5, interactive=True, label="Top K Nearest Neighbors")
    btn = gr.Button("Show similar datasets")
    df = gr.DataFrame(datatype="markdown")
    btn.click(search, inputs=[dataset_name, k], outputs=df)
    gr.Markdown("This space was inspired by https://huggingface.co/spaces/davanstrien/dataset_column_search")
demo.launch()