import gradio as gr import chromadb import pandas as pd import json client = chromadb.Client() collection = client.create_collection("bolivian-recipes") df = pd.read_parquet("hf://datasets/asoria/bolivian-recipes@~parquet/default/last/0000.parquet") text_column = "preparation" ids = [str(i) for i in range(df.shape[0])] documents = df[text_column].to_list() metadatas = df.drop(text_column, axis=1).to_dict("records") collection.add(ids=ids, documents=documents, metadatas=metadatas) with gr.Blocks() as demo: gr.Markdown(" ## Chroma demo using datasets server parquet files") gr.Markdown("Embedding parquet files from https://huggingface.co/datasets/asoria/bolivian-recipes ('preparation' column)") query = gr.Textbox(label="query", placeholder="anticucho") get_result_button = gr.Button("Submit") cached_responses_table = gr.DataFrame() def get_result(query) -> str: result = collection.query(query_texts=[query], n_results=2) ids = result["ids"][0] distances = result["distances"][0] metadatas = [json.dumps(data) for data in result["metadatas"][0]] documents = result["documents"][0] return { cached_responses_table: gr.update(value=pd.DataFrame(data={"ids": ids, "distances":distances, "metadatas": metadatas, "documents":documents})), } get_result_button.click(get_result, inputs=query, outputs=[cached_responses_table]) if __name__ == "__main__": demo.launch()