{ "notebook_title": "Exploratory data analysis (EDA)", "notebook_type": "eda", "dataset_types": ["numeric", "text"], "compatible_library": "pandas", "notebook_template": [ { "cell_type": "markdown", "source": "---\n# **Exploratory Data Analysis (EDA) Notebook for {dataset_name} dataset**\n---" }, { "cell_type": "markdown", "source": "## 1. Setup necessary libraries and load the dataset" }, { "cell_type": "code", "source": "# Install and import necessary libraries.\n!pip install pandas matplotlib seaborn" }, { "cell_type": "code", "source": "import matplotlib.pyplot as plt\nimport seaborn as sns" }, { "cell_type": "code", "source": "# Load the dataset as a DataFrame\n{first_code}" }, { "cell_type": "markdown", "source": "## 2. Understanding the Dataset" }, { "cell_type": "code", "source": "# First rows of the dataset and info\nprint(df.head())\nprint(df.info())" }, { "cell_type": "code", "source": "# Check for missing values\nprint(df.isnull().sum())" }, { "cell_type": "code", "source": "# Identify data types of each column\nprint(df.dtypes)" }, { "cell_type": "code", "source": "# Detect duplicated rows\nprint(df.duplicated().sum())" }, { "cell_type": "code", "source": "# Generate descriptive statistics\nprint(df.describe())" }, { "type": "categoric", "cell_type": "code", "source": "# Unique values in categorical columns\ndf.select_dtypes(include=['object']).nunique()" }, { "cell_type": "markdown", "source": "## 3. Data Visualization" }, { "type": "numeric", "cell_type": "code", "source": "# Correlation matrix for numerical columns\ncorr_matrix = df.corr(numeric_only=True)\nplt.figure(figsize=(10, 8))\nsns.heatmap(corr_matrix, annot=True, fmt='.2f', cmap='coolwarm', square=True)\nplt.title('Correlation Matrix')\nplt.show()" }, { "type": "numeric", "cell_type": "code", "source": "# Distribution plots for numerical columns\nfor column in df.select_dtypes(include=['int64', 'float64']).columns:\n plt.figure(figsize=(8, 4))\n sns.histplot(df[column], kde=True)\n plt.title(f'Distribution of {column}')\n plt.xlabel(column)\n plt.ylabel('Frequency')\n plt.show()" }, { "type": "categoric", "cell_type": "code", "source": "# Count plots for categorical columns\nfor column in df.select_dtypes(include=['object']).columns:\n plt.figure(figsize=(8, 4))\n sns.countplot(x=column, data=df)\n plt.title(f'Count Plot of {column}')\n plt.xlabel(column)\n plt.ylabel('Count')\n plt.show()" }, { "type": "numeric", "cell_type": "code", "source": "# Box plots for detecting outliers in numerical columns\nfor column in df.select_dtypes(include=['int64', 'float64']).columns:\n plt.figure(figsize=(8, 4))\n sns.boxplot(df[column])\n plt.title(f'Box Plot of {column}')\n plt.xlabel(column)\n plt.show()" } ] }