File size: 617 Bytes
a8fd329 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
import gradio as gr
from gliner import GLiNER
# Cargar el modelo
model = GLiNER.from_pretrained("EmergentMethods/gliner_medium_news-v2.1")
# Función para predecir entidades
def predict_entities(text):
labels = ["person", "location", "date", "event", "facility", "vehicle", "number", "organization"]
entities = model.predict_entities(text, labels)
return entities
# Definir la función de API
def api_function(text):
entities = predict_entities(text)
return entities
# Configurar la interfaz Gradio
iface = gr.Interface(fn=api_function, inputs="text", outputs="json")
iface.launch(share=True)
|