File size: 617 Bytes
a8fd329
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import gradio as gr
from gliner import GLiNER

# Cargar el modelo
model = GLiNER.from_pretrained("EmergentMethods/gliner_medium_news-v2.1")

# Función para predecir entidades
def predict_entities(text):
    labels = ["person", "location", "date", "event", "facility", "vehicle", "number", "organization"]
    entities = model.predict_entities(text, labels)
    return entities

# Definir la función de API
def api_function(text):
    entities = predict_entities(text)
    return entities

# Configurar la interfaz Gradio
iface = gr.Interface(fn=api_function, inputs="text", outputs="json")
iface.launch(share=True)