File size: 17,082 Bytes
efe9672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
403a65b
b6793f7
efe9672
 
 
 
 
 
 
 
 
 
 
 
 
403a65b
efe9672
 
 
 
 
403a65b
b6793f7
efe9672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
403a65b
 
efe9672
403a65b
efe9672
403a65b
 
 
 
 
efe9672
403a65b
efe9672
403a65b
efe9672
403a65b
efe9672
403a65b
efe9672
403a65b
efe9672
403a65b
efe9672
403a65b
 
 
 
 
 
 
efe9672
 
 
403a65b
efe9672
403a65b
efe9672
403a65b
efe9672
403a65b
efe9672
403a65b
efe9672
403a65b
efe9672
403a65b
efe9672
403a65b
 
 
efe9672
403a65b
 
 
 
 
 
 
 
efe9672
403a65b
efe9672
403a65b
efe9672
403a65b
efe9672
403a65b
 
 
efe9672
403a65b
 
 
 
efe9672
 
 
 
 
 
71fb6fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a45a0f4
71fb6fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efe9672
a45a0f4
 
71fb6fc
a45a0f4
 
 
 
 
 
 
 
 
 
 
efe9672
a45a0f4
 
 
efe9672
403a65b
 
 
 
 
a45a0f4
403a65b
a45a0f4
403a65b
 
 
a45a0f4
 
 
efe9672
a45a0f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71fb6fc
403a65b
efe9672
 
403a65b
efe9672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4650137
efe9672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22def4c
efe9672
 
 
 
22def4c
efe9672
22def4c
efe9672
 
 
 
 
22def4c
efe9672
 
 
22def4c
efe9672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
403a65b
b6793f7
efe9672
 
 
22def4c
efe9672
 
 
 
 
 
 
 
 
 
 
 
 
403a65b
b6793f7
efe9672
 
 
 
 
 
 
 
b6793f7
efe9672
 
 
403a65b
b6793f7
efe9672
 
 
 
 
403a65b
efe9672
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
# =================================================================================================
# https://huggingface.co/spaces/asigalov61/Melody-Harmonizer-Transformer
# =================================================================================================

import os
import time as reqtime
import datetime
from pytz import timezone

import gradio as gr
import spaces

import os

from tqdm import tqdm

import numpy as np

import torch

from x_transformer_1_23_2 import *

import random

import TMIDIX

from midi_to_colab_audio import midi_to_colab_audio

# =================================================================================================

@spaces.GPU
def Harmonize_Melody(input_src_midi,
                    source_melody_transpose_value,
                    model_top_k_sampling_value,
                    texture_harmonized_chords,
                    melody_MIDI_patch_number,
                    harmonized_accompaniment_MIDI_patch_number,
                    base_MIDI_patch_number
                    ):

    print('=' * 70)
    print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    print('=' * 70)
    
    start_time = reqtime.time()

    sfn = os.path.basename(input_src_midi.name)
    sfn1 = sfn.split('.')[0]
    
    print('Input src MIDI name:', sfn)

    print('=' * 70)
    print('Requested settings:')
    print('Source melody transpose value:', source_melody_transpose_value)
    print('Model top_k sampling value:', model_top_k_sampling_value)
    print('Texture harmonized chords:', texture_harmonized_chords)
    print('Melody MIDI patch number:', melody_MIDI_patch_number)
    print('Harmonized accompaniment MIDI patch number:', harmonized_accompaniment_MIDI_patch_number)
    print('Base MIDI patch number:', base_MIDI_patch_number)
    print('=' * 70)
    
    #==================================================================

    print('=' * 70)
    print('Loading seed melody...')
    
    #===============================================================================
    # Raw single-track ms score
    
    raw_score = TMIDIX.midi2single_track_ms_score(input_src_midi.name)
    
    #===============================================================================
    # Enhanced score notes
    
    escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
    
    #===============================================================================
    # Augmented enhanced score notes
    
    escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes, timings_divider=16)
    
    cscore = [c[0] for c in TMIDIX.chordify_score([1000, escore_notes])]
    
    mel_score = TMIDIX.fix_monophonic_score_durations(TMIDIX.recalculate_score_timings(cscore))
    
    mel_score = TMIDIX.transpose_escore_notes(mel_score, source_melody_transpose_value)
    
    print('=' * 70)
    print('Done!')
    print('=' * 70)
    
    mel_pitches = [p[4] % 12 for p in mel_score]
    
    print('Melody has', len(mel_pitches), 'notes')
    print('=' * 70)

    #===============================================================================

    print('=' * 70)
    print('Melody Harmonizer Transformer')
    print('=' * 70)

    print('Loading Melody Harmonizer Transformer Model...')

    SEQ_LEN = 75
    PAD_IDX = 144
    
    # instantiate the model
    
    model = TransformerWrapper(
        num_tokens = PAD_IDX+1,
        max_seq_len = SEQ_LEN,
        attn_layers = Decoder(dim = 1024, depth = 12, heads = 16, attn_flash = True)
        )
    
    model = AutoregressiveWrapper(model, ignore_index = PAD_IDX, pad_value=PAD_IDX)
    
    model_path = 'Melody_Harmonizer_Transformer_Trained_Model_7522_steps_0.6545_loss_0.7906_acc.pth'
    
    model.load_state_dict(torch.load(model_path))
    
    model.cuda()
    
    dtype = torch.bfloat16
    
    ctx = torch.amp.autocast(device_type='cuda', dtype=dtype)
    
    model.eval()
    
    print('Done!')    

    print('=' * 70)
    print('Harmonizing...')
    print('=' * 70)

    #===============================================================================
    
    mel_remainder_value = (((len(mel_pitches) // 24)+1) * 24) - len(mel_pitches)
    
    mel_pitches_ext = mel_pitches + mel_pitches[:mel_remainder_value]
    
    song = []
    
    for i in range(0, len(mel_pitches_ext)-12, 12):
    
      mel_chunk = mel_pitches_ext[i:i+24]
    
      data = [141] + mel_chunk + [142]
    
      for j in range(24):
    
        data.append(mel_chunk[j])
    
        x = torch.tensor([data], dtype=torch.long, device='cuda')
    
        with ctx:
          out = model.generate(x,
                              1,
                              filter_logits_fn=top_k,
                              filter_kwargs={'k': model_top_k_sampling_value},
                              temperature=0.9,
                              return_prime=False,
                              verbose=False)
    
        outy = out.tolist()[0]
    
        data.append(outy[0])
    
      if i != len(mel_pitches_ext)-24:
    
        song.extend(data[26:50])
      else:
        song.extend(data[26:])
    
    song = song[:len(mel_pitches) * 2]
    
    #===============================================================================

    print('Harmonized', len(song), 'out of', len(mel_pitches), 'notes')

    print('Done!')
    print('=' * 70)
    
    #===============================================================================

    def find_best_match(matches_indexes, previous_match_index):
    
      msigs = []
    
      for midx in matches_indexes:
    
        mat = all_chords_ptcs_chunks[midx]
    
        msig = []
    
        for m in mat:
          msig.extend([sum(m) / len(m), len(m)])
    
        msigs.append(msig)
    
      pmat = all_chords_ptcs_chunks[previous_match_index]
    
      psig = []
    
      for p in pmat:
        psig.extend([sum(p) / len(p), len(p)])
    
      dists = []
    
      for m in msigs:
        dists.append(TMIDIX.minkowski_distance(psig, m))
    
      min_dist = min(dists)
      min_dist_idx = dists.index(min_dist)
    
      return matches_indexes[min_dist_idx]

    #===============================================================================

    if texture_harmonized_chords:

        print('=' * 70)
        print('Texturing harmonized chords...')
        print('=' * 70)
    
        chunk_length = 2
        
        harm_chords = [TMIDIX.ALL_CHORDS_FILTERED[s-12] for s in song if 11 < s < 141]
        
        harm_toks = [TMIDIX.ALL_CHORDS_FILTERED.index(c) for c in harm_chords] + [TMIDIX.ALL_CHORDS_FILTERED.index(harm_chords[-1])] * (chunk_length - (len(harm_chords) % chunk_length))
        
        final_song = []
        
        trg_chunk = np.array(harm_toks[:chunk_length])
        sidxs = np.where((src_chunks == trg_chunk).all(axis=1))[0].tolist()
        
        sidx = random.choice(sidxs)
        pidx = sidx
        
        final_song.extend(all_chords_ptcs_chunks[sidx])
        
        for i in tqdm(range(chunk_length, len(harm_toks), chunk_length)):
        
          trg_chunk = np.array(harm_toks[i:i+chunk_length])
        
          sidxs = np.where((src_chunks == trg_chunk).all(axis=1))[0].tolist()
        
          if len(sidxs) > 0:
        
            sidx = find_best_match(sidxs, pidx)
            pidx = sidx
        
            final_song.extend(all_chords_ptcs_chunks[sidx])
        
          else:
            print('Dead end!')
            break
        
        final_song = final_song[:len(harm_chords)]
        
        print('=' * 70)
        print(len(final_song))
        print('=' * 70)
        print('Done!')
        print('=' * 70)

        print('Rendering textured results...')
        print('=' * 70)

        output_score = []
        
        time = 0
        
        patches = [0] * 16
        patches[0] = harmonized_accompaniment_MIDI_patch_number
        
        if base_MIDI_patch_number > -1:
          patches[2] = base_MIDI_patch_number
        
        patches[3] = melody_MIDI_patch_number
    
        i = 0
        
        for s in final_song:
    
            time = mel_score[i][1] * 16
            dur = mel_score[i][2] * 16
            
            output_score.append(['note', time, dur, 3,  mel_score[i][4], 115+(mel_score[i][4] % 12), 40])
            
            for c in s:
                
                pitch = c
                output_score.append(['note', time, dur, 0, pitch, max(40, pitch), harmonized_accompaniment_MIDI_patch_number])
                        
                if base_MIDI_patch_number > -1:
                    output_score.append(['note', time, dur, 2, (s[-1] % 12) + 24, 120-(s[-1] % 12), base_MIDI_patch_number])

            i += 1        

    else:
    
        print('Rendering results...')
        print('=' * 70)
    
        output_score = []
        
        time = 0
        
        patches = [0] * 16
        patches[0] = harmonized_accompaniment_MIDI_patch_number
        
        if base_MIDI_patch_number > -1:
          patches[2] = base_MIDI_patch_number
        
        patches[3] = melody_MIDI_patch_number
    
        i = 0
        
        for s in song:
    
            if 11 < s < 141:
        
                time = mel_score[i][1] * 16
                dur = mel_score[i][2] * 16
                
                output_score.append(['note', time, dur, 3,  mel_score[i][4], 115+(mel_score[i][4] % 12), 40])
    
                chord = TMIDIX.ALL_CHORDS_FILTERED[s-12]
                
                for c in chord:
                    
                    pitch = 48+c
                    output_score.append(['note', time, dur, 0, pitch, max(40, pitch), harmonized_accompaniment_MIDI_patch_number])
                            
                    if base_MIDI_patch_number > -1:
                        output_score.append(['note', time, dur, 2, chord[-1]+24, 120-chord[-1], base_MIDI_patch_number])
    
                i += 1

    fn1 = "Melody-Harmonizer-Transformer-Composition"
    
    detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(output_score,
                                                              output_signature = 'Melody Harmonizer Transformer',
                                                              output_file_name = fn1,
                                                              track_name='Project Los Angeles',
                                                              list_of_MIDI_patches=patches
                                                              )
    
    new_fn = fn1+'.mid'
            
    
    audio = midi_to_colab_audio(new_fn, 
                        soundfont_path=soundfont,
                        sample_rate=16000,
                        volume_scale=10,
                        output_for_gradio=True
                        )
    
    #========================================================

    output_midi_title = str(fn1)
    output_midi = str(new_fn)
    output_audio = (16000, audio)
    
    output_plot = TMIDIX.plot_ms_SONG(output_score, plot_title=output_midi, return_plt=True)
    
    print('Done!')
    
    #========================================================

    harmonization_summary_string = '=' * 70
    harmonization_summary_string += '\n'

    harmonization_summary_string += 'Source melody has ' + str(len(mel_pitches)) + ' monophonic pitches' + '\n'
    harmonization_summary_string += '=' * 70
    harmonization_summary_string += '\n'
    
    harmonization_summary_string += 'Harmonized ' + str(len(song) // 2) + ' out of ' + str(len(mel_pitches)) + ' source melody pitches' + '\n'
    harmonization_summary_string += '=' * 70
    harmonization_summary_string += '\n'
    
    #========================================================
    
    print('-' * 70)
    print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    print('-' * 70)
    print('Req execution time:', (reqtime.time() - start_time), 'sec')

    return output_audio, output_plot, output_midi, harmonization_summary_string

# =================================================================================================

if __name__ == "__main__":
    
    PDT = timezone('US/Pacific')
    
    print('=' * 70)
    print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    print('=' * 70)

    #===============================================================================

    soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"

    print('Loading Melody Harmonizer Transformer Pitches Chords Pairs Data...')
    print('=' * 70)
    all_chords_toks_chunks, all_chords_ptcs_chunks = TMIDIX.Tegridy_Any_Pickle_File_Reader('Melody_Harmonizer_Transformer_Pitches_Chords_Pairs_Data')
    
    print('=' * 70)
    print('Total number of pitches chords pairs:', len(all_chords_toks_chunks))
    print('=' * 70)
    print('Loading pitches chords pairs...')

    src_chunks = np.array(all_chords_toks_chunks)
    
    print('Done!')
    print('=' * 70)

    #===============================================================================
    
    app = gr.Blocks()
    
    with app:
        gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Melody Harmonizer Transformer</h1>")
        gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Harmonize any MIDI melody with transformers</h1>")
        gr.Markdown(
            "![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Melody-Harmonizer-Transformer&style=flat)\n\n"
            "This is a demo for Monster MIDI Dataset\n\n"
            "Check out [Monster MIDI Dataset](https://github.com/asigalov61/Monster-MIDI-Dataset) on GitHub!\n\n"
        )
        
        gr.Markdown("## Upload your MIDI or select a sample example below")
        gr.Markdown("### For best results upload only monophonic melody MIDIs")
        
        input_src_midi = gr.File(label="Source MIDI", file_types=[".midi", ".mid", ".kar"])
        
        gr.Markdown("## Select harmonization options")

        source_melody_transpose_value = gr.Slider(-6, 6, value=0, step=1, label="Source melody transpose value", info="You can transpose source melody by specified number of semitones if the original melody key does not harmonize well")
        model_top_k_sampling_value = gr.Slider(1, 50, value=15, step=1, label="Model sampling top_k value", info="Decreasing this value may produce better harmonization results in some cases")
        texture_harmonized_chords = gr.Checkbox(label="Texture harmonized chords", value=True, info="Texture harmonized chords for more pleasant listening")
        melody_MIDI_patch_number = gr.Slider(0, 127, value=40, step=1, label="Source melody MIDI patch number")
        harmonized_accompaniment_MIDI_patch_number = gr.Slider(0, 127, value=0, step=1, label="Harmonized accompaniment MIDI patch number")
        base_MIDI_patch_number = gr.Slider(-1, 127, value=35, step=1, label="Base MIDI patch number")
        
        run_btn = gr.Button("Harmonize Melody", variant="primary")

        gr.Markdown("## Harmonization results")

        output_summary = gr.Textbox(label="Melody harmonization summary")
        
        output_audio = gr.Audio(label="Output MIDI audio", format="mp3", elem_id="midi_audio")
        output_plot = gr.Plot(label="Output MIDI score plot")
        output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])

        run_event = run_btn.click(Harmonize_Melody, 
                                                  [input_src_midi,
                                                    source_melody_transpose_value,
                                                    model_top_k_sampling_value,
                                                    texture_harmonized_chords,
                                                    melody_MIDI_patch_number,
                                                    harmonized_accompaniment_MIDI_patch_number,
                                                    base_MIDI_patch_number],                                                                                                                       
                                                   [output_audio, output_plot, output_midi, output_summary]
                                 )

        gr.Examples(
            [
            ["USSR Anthem Seed Melody.mid", 0, 15, True, 40, 0, 35],
            ],
            [input_src_midi,
            source_melody_transpose_value,
            model_top_k_sampling_value,
            texture_harmonized_chords,
            melody_MIDI_patch_number,
            harmonized_accompaniment_MIDI_patch_number,
            base_MIDI_patch_number],                                                                                                                       
            [output_audio, output_plot, output_midi, output_summary],
            Harmonize_Melody,
            cache_examples=True,
        )
   
        app.queue().launch()