diff --git "a/x_transformer_1_23_2.py" "b/x_transformer_1_23_2.py" --- "a/x_transformer_1_23_2.py" +++ "b/x_transformer_1_23_2.py" @@ -1,2458 +1,2465 @@ -#=================================================================================================================== -# -# X Trasformer Module -# -# Partial x-transformers code With useful modifications -# -# Version 1.0 -# -# Original source code courtesy of lucidrains -# https://github.com/lucidrains/x-transformers -# -# Original source code retrieved on 10/10/2023 -# -# Project Los Angeles -# Tegridy Code 2023 - -#=================================================================================================================== - -# Critical dependencies -# -# !pip install torch -# !pip install einops - -#=================================================================================================================== - -from functools import partial -from typing import Optional, Tuple - -import torch -from torch import nn, einsum, Tensor -import torch.nn.functional as F - -from collections import namedtuple -from functools import wraps -from packaging import version -from dataclasses import dataclass - -from einops import rearrange, repeat - -# constants - -EfficientAttentionConfig = namedtuple('EfficientAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient']) - -@dataclass -class Intermediates: - qk_similarities: Optional[Tensor] = None - pre_softmax_attn: Optional[Tensor] = None - post_softmax_attn: Optional[Tensor] = None - cached_kv: Optional[Tuple[Tensor, Tensor]] = None - - def to_tuple(self): - return (self.qk_similarities, self.pre_softmax_attn, self.post_softmax_attn) - -# helpers - -def exists(val): - return val is not None - -def default(val, d): - return val if exists(val) else d - -def compact(arr): - return [*filter(exists, arr)] - -def once(fn): - called = False - @wraps(fn) - def inner(x): - nonlocal called - if called: - return - called = True - return fn(x) - return inner - -print_once = once(print) - -# functions for creating causal mask -# need a special one for onnx cpu (no support for .triu) - -def create_causal_mask(i, j, device): - return torch.ones((i, j), device = device, dtype = torch.bool).triu(j - i + 1) - -def onnx_create_causal_mask(i, j, device): - r = torch.arange(i, device = device) - causal_mask = rearrange(r, 'i -> i 1') < rearrange(r, 'j -> 1 j') - causal_mask = F.pad(causal_mask, (j - i, 0), value = False) - return causal_mask - -# main class - -class Attend(nn.Module): - def __init__( - self, - *, - dropout = 0., - causal = False, - heads = None, - talking_heads = False, - sparse_topk = None, - scale = None, - qk_norm = False, - flash = False, - add_zero_kv = False, - onnxable = False - ): - super().__init__() - self.scale = scale - self.qk_norm = qk_norm - - self.causal = causal - self.create_causal_mask = onnx_create_causal_mask if onnxable else create_causal_mask - - self.attn_fn = partial(F.softmax, dtype = torch.float32) if not qk_norm else F.softmax - - self.dropout = dropout - self.attn_dropout = nn.Dropout(dropout) - - # talking heads - - assert not (flash and talking_heads), 'talking heads not compatible with flash attention' - - self.talking_heads = talking_heads - if talking_heads: - self.pre_softmax_talking_heads = nn.Conv2d(heads, heads, 1, bias = False) - self.post_softmax_talking_heads = nn.Conv2d(heads, heads, 1, bias = False) - - # sparse topk - - assert not (flash and sparse_topk), 'sparse topk not compatible with flash attention' - self.sparse_topk = sparse_topk - - # add a key / value token composed of zeros - # in case this helps controlling outliers, proposed by https://www.evanmiller.org/attention-is-off-by-one.html - - self.add_zero_kv = add_zero_kv - - # flash attention - - self.flash = flash - assert not (flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above' - - # determine efficient attention configs for cuda and cpu - - self.cpu_config = EfficientAttentionConfig(True, True, True) - self.cuda_config = None - - if not torch.cuda.is_available() or not flash: - return - - device_properties = torch.cuda.get_device_properties(torch.device('cuda')) - - major, minor = device_properties.major, device_properties.minor - - if (major, minor) == (8, 0): - print_once('A100 GPU detected, using flash attention if input tensor is on cuda') - self.cuda_config = EfficientAttentionConfig(True, False, False) - elif (major, minor) == (9, 0): - print_once('H100 GPU detected, using flash attention') - self.cuda_config = EfficientAttentionConfig(True, False, False) - else: - print_once('Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda') - self.cuda_config = EfficientAttentionConfig(False, True, True) - - def flash_attn( - self, - q, k, v, - mask = None, - attn_bias = None - ): - batch, heads, q_len, _, k_len, is_cuda, device = *q.shape, k.shape[-2], q.is_cuda, q.device - - # Recommended for multi-query single-key-value attention by Tri Dao - # kv shape torch.Size([1, 512, 64]) -> torch.Size([1, 8, 512, 64]) - - if k.ndim == 3: - k = rearrange(k, 'b ... -> b 1 ...').expand_as(q) - - if v.ndim == 3: - v = rearrange(v, 'b ... -> b 1 ...').expand_as(q) - - # handle scale - by default they scale by dim_head ** -0.5, but need to take care if using cosine sim attention - - if self.qk_norm: - default_scale = q.shape[-1] ** -0.5 - q = q * (self.scale / default_scale) - - # Check if mask exists and expand to compatible shape - # The mask is B L, so it would have to be expanded to B H N L - - causal = self.causal - - # in the case of kv caching with one token (q_len == 1), just turn off causal masking - # in speculative decoding, this may go up to 5-6, so right aligned causal mask will be needed there - - if q_len == 1 and causal: - causal = False - - # expand key padding mask - - if exists(mask): - assert mask.ndim == 4 - mask = mask.expand(batch, heads, q_len, k_len) - - # handle kv cache - this should be bypassable in updated flash attention 2 - - if k_len > q_len and causal: - causal_mask = self.create_causal_mask(q_len, k_len, device = device) - if not exists(mask): - mask = ~causal_mask - else: - mask = mask & ~causal_mask - causal = False - - # manually handle causal mask, if another mask was given - - row_is_entirely_masked = None - - if exists(mask) and causal: - causal_mask = self.create_causal_mask(q_len, k_len, device = device) - mask = mask & ~causal_mask - - # protect against an entire row being masked out - - row_is_entirely_masked = ~mask.any(dim = -1) - mask[..., 0] = mask[..., 0] | row_is_entirely_masked - - causal = False - - # handle alibi positional bias - # convert from bool to float - - if exists(attn_bias): - attn_bias = rearrange(attn_bias, 'h i j -> 1 h i j').expand(batch, heads, -1, -1) - - # if mask given, the mask would already contain the causal mask from above logic - # otherwise, if no mask given but still causal, mask out alibi positional bias to a large negative number - - mask_value = -torch.finfo(q.dtype).max - - if exists(mask): - attn_bias = attn_bias.masked_fill(~mask, mask_value // 2) - elif causal: - causal_mask = self.create_causal_mask(q_len, k_len, device = device) - attn_bias = attn_bias.masked_fill(causal_mask, mask_value // 2) - causal = False - - # scaled_dot_product_attention handles attn_mask either as bool or additive bias - # make it an additive bias here - - mask = attn_bias - - # Check if there is a compatible device for flash attention - - config = self.cuda_config if is_cuda else self.cpu_config - - # pytorch 2.0 flash attn: q, k, v, mask, dropout, causal, softmax_scale - - with torch.backends.cuda.sdp_kernel(enable_math=True, enable_mem_efficient=True): - out = F.scaled_dot_product_attention( - q, k, v, - attn_mask = mask, - dropout_p = self.dropout if self.training else 0., - is_causal = causal - ) - - # for a row that is entirely masked out, should zero out the output of that row token - - if exists(row_is_entirely_masked): - out = out.masked_fill(row_is_entirely_masked[..., None], 0.) - - return out, Intermediates() - - def forward( - self, - q, k, v, - mask = None, - attn_bias = None, - prev_attn = None - ): - """ - einstein notation - b - batch - h - heads - n, i, j - sequence length (base sequence length, source, target) - d - feature dimension - """ - - n, heads, kv_heads, device = q.shape[-2], q.shape[1], k.shape[1], q.device - - scale = default(self.scale, q.shape[-1] ** -0.5) - - causal = self.causal - - # handle kv cached decoding - - if n == 1 and causal: - causal = False - - # handle grouped multi-query attention - - if kv_heads == 1: - k, v = map(lambda t: rearrange(t, 'b 1 n d -> b n d'), (k, v)) - elif kv_heads < heads: - k, v = map(lambda t: repeat(t, 'b kvh n d -> b (r kvh) n d', r = heads // kv_heads), (k, v)) - - # handle zero kv, as means for allowing network to attend to nothing - - if self.add_zero_kv: - k, v = map(lambda t: F.pad(t, (0, 0, 1, 0), value = 0.), (k, v)) - - if exists(mask): - mask = F.pad(mask, (1, 0), value = True) - - if exists(attn_bias): - attn_bias = F.pad(attn_bias, (1, 0), value = 0.) - - if self.flash: - assert not exists(prev_attn), 'residual attention not compatible with flash attention' - return self.flash_attn(q, k, v, mask = mask, attn_bias = attn_bias) - - kv_einsum_eq = 'b j d' if k.ndim == 3 else 'b h j d' - - dots = einsum(f'b h i d, {kv_einsum_eq} -> b h i j', q, k) * scale - - if exists(prev_attn): - dots = dots + prev_attn - - qk_similarities = dots.clone() - - if self.talking_heads: - dots = self.pre_softmax_talking_heads(dots) - - if exists(attn_bias): - dots = dots + attn_bias - - i, j, dtype = *dots.shape[-2:], dots.dtype - - mask_value = -torch.finfo(dots.dtype).max - - if exists(self.sparse_topk) and self.sparse_topk < j: - top_values, _ = dots.topk(self.sparse_topk, dim = -1) - sparse_topk_mask = dots < top_values[..., -1:] - mask = (mask & sparse_topk_mask) if exists(mask) else sparse_topk_mask - - if exists(mask): - dots = dots.masked_fill(~mask, mask_value) - - if causal: - causal_mask = self.create_causal_mask(i, j, device = device) - dots = dots.masked_fill(causal_mask, mask_value) - - pre_softmax_attn = dots.clone() - - attn = self.attn_fn(dots, dim = -1) - attn = attn.type(dtype) - - post_softmax_attn = attn.clone() - - attn = self.attn_dropout(attn) - - if self.talking_heads: - attn = self.post_softmax_talking_heads(attn) - - out = einsum(f'b h i j, {kv_einsum_eq} -> b h i d', attn, v) - - intermediates = Intermediates( - qk_similarities = qk_similarities, - pre_softmax_attn = pre_softmax_attn, - post_softmax_attn = post_softmax_attn - ) - - return out, intermediates - -#=================================================================================================================== - -from math import ceil, log -from typing import Optional, Union, Tuple, Callable - -import torch -from torch import nn, Tensor -from torch.nn import Module -import torch.nn.functional as F - -from einops import rearrange, pack, unpack - -def exists(val): - return val is not None - -def default(val, d): - return val if exists(val) else d - -def identity(t, *args, **kwargs): - return t - -def cast_tuple(t, length = 1): - return t if isinstance(t, tuple) else (t,) * length - -def eval_decorator(fn): - def inner(self, *args, **kwargs): - was_training = self.training - self.eval() - out = fn(self, *args, **kwargs) - self.train(was_training) - return out - return inner - -# for variable lengthed prefixes - -def align_right(t, lens, pad_id = 0): - batch, seq_len, device, dtype = *t.shape, t.device, t.dtype - - assert lens.ndim == 1 and lens.shape[0] == batch - assert lens.amax() <= seq_len - - pad_lens = seq_len - lens - max_pad_len = pad_lens.amax() - - batch_arange = torch.arange(batch, device = device, dtype = torch.long)[..., None] - prompt_len_arange = torch.arange(seq_len, device = device, dtype = torch.long) - - t = F.pad(t, (max_pad_len, 0), value = 0) - offset = max_pad_len - pad_lens - - aligned = t[batch_arange, prompt_len_arange + offset[..., None]] - return aligned - -# nucleus - -def top_p(logits, thres = 0.9): - sorted_logits, sorted_indices = torch.sort(logits, descending = True) - cum_probs = torch.cumsum(F.softmax(sorted_logits, dim = -1), dim = -1) - - sorted_indices_to_remove = cum_probs > thres - sorted_indices_to_remove = F.pad(sorted_indices_to_remove, (1, -1), value = False) - - sorted_logits[sorted_indices_to_remove] = float('-inf') - return sorted_logits.scatter(1, sorted_indices, sorted_logits) - -# topk - -def top_k(logits, frac_num_tokens = 0.1, k = None): - num_tokens = logits.shape[-1] - - k = default(k, ceil(frac_num_tokens * num_tokens)) - k = min(k, num_tokens) - - val, ind = torch.topk(logits, k) - probs = torch.full_like(logits, float('-inf')) - probs.scatter_(1, ind, val) - return probs - -# top_a - -def top_a(logits, min_p_pow = 2.0, min_p_ratio = 0.02): - probs = F.softmax(logits, dim = -1) - max_probs = torch.amax(probs, dim = -1, keepdim = True) - limit = torch.pow(max_probs, min_p_pow) * min_p_ratio - return torch.where(probs < limit, float('-inf'), logits) - -# contrastive decoding function - -def contrastive_decode_fn( - expert_logits, - amateur_logits, - alpha = 0.1, - beta = 0.5 -): - """ - Appendix A Algorithm 2 - https://arxiv.org/abs/2309.09117 - """ - - cutoff = log(alpha) + expert_logits.amax(dim = -1, keepdim = True) - diffs = (1 + beta) * expert_logits - beta * amateur_logits - contrastive_decode_logits = diffs.masked_fill(expert_logits < cutoff, -torch.finfo(expert_logits.dtype).max) - return contrastive_decode_logits - -# autoregressive wrapper class - -class AutoregressiveWrapper(Module): - def __init__( - self, - net, - ignore_index = -100, - pad_value = 0, - mask_prob = 0., - add_attn_z_loss = False - ): - super().__init__() - self.pad_value = pad_value - self.ignore_index = ignore_index - - self.net = net - self.max_seq_len = net.max_seq_len - - # paper shows masking (MLM) in conjunction with autoregressive decoder-only training leads to big improvements https://arxiv.org/abs/2210.13432 - assert mask_prob < 1. - self.mask_prob = mask_prob - - # whether to add router z-loss - self.add_attn_z_loss = add_attn_z_loss - - @torch.no_grad() - @eval_decorator - def generate( - self, - prompts, - seq_len, - eos_token = None, - temperature = 1., - prompt_lens: Optional[Tensor] = None, - filter_logits_fn: Callable = top_k, - restrict_to_max_seq_len = True, - amateur_model: Optional[Union[Module, Tuple[Module]]] = None, - filter_kwargs: dict = dict(), - contrastive_decode_kwargs: Union[dict, Tuple[dict]] = dict( - beta = 0.5, - alpha = 0.1 - ), - cache_kv = True, - verbose=True, - return_prime=False, - **kwargs - ): - max_seq_len, device = self.max_seq_len, prompts.device - - prompts, ps = pack([prompts], '* n') - - b, t = prompts.shape - - # handle variable lengthed prompts (prefixes) - - seq_start_pos = None - if exists(prompt_lens): - prompts = align_right(prompts, prompt_lens, pad_id = self.pad_value) - seq_start_pos = t - prompt_lens - - # output from which sampled tokens appended to - - out = prompts - - if verbose: - print("Generating sequence of max length:", seq_len) - - # kv caches - - cache = None - - # if doing contrastive decoding, turn off filter automatically - - if exists(amateur_model): - amateur_model = cast_tuple(amateur_model) - contrastive_decode_kwargs = cast_tuple(contrastive_decode_kwargs) - - assert len(amateur_model) == len(contrastive_decode_kwargs) - - amateur_caches = [None] * len(amateur_model) - filter_logits_fn = identity - - for i, module in enumerate(amateur_model): - if isinstance(module, AutoregressiveWrapper): - amateur_model[i] = module.net - - module.eval() - - # sampling up to seq_len - - for sl in range(seq_len): - - if restrict_to_max_seq_len: - x = out[:, -max_seq_len:] - - if exists(cache): - for inter in cache.attn_intermediates: - inter.cached_kv = [t[..., -(max_seq_len - 1):, :] for t in inter.cached_kv] - - logits, new_cache = self.net( - x, - return_intermediates = True, - cache = cache, - seq_start_pos = seq_start_pos, - **kwargs - ) - - if cache_kv and self.net.can_cache_kv: - cache = new_cache - - logits = logits[:, -1] - - # handle contrastive decoding, Li et al. - # https://arxiv.org/abs/2210.15097 - - if exists(amateur_model): - for i, (amateur, amateur_cache, amateur_contrastive_decode_kwargs) in enumerate(zip(amateur_model, amateur_caches, contrastive_decode_kwargs)): - amateur_logits, next_amateur_cache = amateur( - x, - return_intermediates = True, - cache = amateur_cache, - seq_start_pos = seq_start_pos, - **kwargs - ) - - amateur_logits = amateur_logits[:, -1] - - assert amateur_logits.shape == logits.shape, 'logits dimension are not the same between amateur and expert model' - logits = contrastive_decode_fn(logits, amateur_logits, **amateur_contrastive_decode_kwargs) - - if cache_kv and amateur.can_cache_kv: - amateur_caches[i] = next_amateur_cache - - # filter by top_k, top_p (nucleus), top_a, or custom - - filtered_logits = filter_logits_fn(logits, **filter_kwargs) - - probs = F.softmax(filtered_logits / temperature, dim=-1) - - sample = torch.multinomial(probs, 1) - - out = torch.cat((out, sample), dim=-1) - - if verbose: - if sl % 32 == 0: - print(sl, '/', seq_len) - - if exists(eos_token): - is_eos_tokens = (out == eos_token) - - if is_eos_tokens.any(dim = -1).all(): - # mask out everything after the eos tokens - shifted_is_eos_tokens = F.pad(is_eos_tokens, (1, -1)) - mask = shifted_is_eos_tokens.float().cumsum(dim = -1) >= 1 - out = out.masked_fill(mask, self.pad_value) - - if verbose: - print('Model called the end of sequence at:', sl, '/', seq_len) - - break - - if return_prime: - return out[:, :] - - else: - return out[:, t:] - - # out, = unpack(out, ps, '* n') - - # return out - - def compute_accuracy(self, logits, labels): - out = torch.argmax(logits, dim=-1) - out = out.flatten() - labels = labels.flatten() - - mask = (labels != self.ignore_index) # can also be self.pad_value (your choice) - out = out[mask] - labels = labels[mask] - - num_right = (out == labels) - num_right = torch.sum(num_right).type(torch.float32) - - acc = num_right / len(labels) - return acc - - def forward(self, x, **kwargs): - seq, ignore_index, add_attn_z_loss = x.shape[1], self.ignore_index, self.add_attn_z_loss - - inp, target = x[:, :-1], x[:, 1:] - inp = torch.where(inp == ignore_index, self.pad_value, inp) - - if self.mask_prob > 0.: - rand = torch.randn(inp.shape, device = x.device) - rand[:, 0] = -torch.finfo(rand.dtype).max # first token should not be masked out - num_mask = min(int(seq * self.mask_prob), seq - 1) - indices = rand.topk(num_mask, dim = -1).indices - mask = ~torch.zeros_like(inp).scatter(1, indices, 1.).bool() - kwargs.update(self_attn_kv_mask = mask) - - logits, cache = self.net( - inp, - return_intermediates = True, - return_attn_z_loss = add_attn_z_loss, - **kwargs - ) - - acc = self.compute_accuracy(logits, target) - - loss = F.cross_entropy( - rearrange(logits, 'b n c -> b c n'), - target, - ignore_index = ignore_index - ) - - if add_attn_z_loss: - loss = loss + cache.attn_z_loss - - return loss, acc - -#=============================================================================== - -import math -from random import random - -import torch -from torch import nn, einsum, Tensor -import torch.nn.functional as F - -from functools import partial, wraps -from inspect import isfunction -from collections import namedtuple -from dataclasses import dataclass -from typing import List, Callable, Optional - -from einops import rearrange, repeat, reduce, pack, unpack -from einops.layers.torch import Rearrange - -# constants - -DEFAULT_DIM_HEAD = 64 - -@dataclass -class LayerIntermediates: - hiddens: Optional[List[Tensor]] = None - attn_intermediates: Optional[List[Intermediates]] = None - layer_hiddens: Optional[List[Tensor]] = None - attn_z_loss: Optional[Tensor] = None - mems: Optional[Tensor] = None - -# helpers - -def exists(val): - return val is not None - -def default(val, d): - if exists(val): - return val - return d() if isfunction(d) else d - -def cast_tuple(val, depth): - return val if isinstance(val, tuple) else (val,) * depth - -def divisible_by(num, den): - return (num % den) == 0 - -def maybe(fn): - @wraps(fn) - def inner(x, *args, **kwargs): - if not exists(x): - return x - return fn(x, *args, **kwargs) - return inner - -class always(): - def __init__(self, val): - self.val = val - def __call__(self, *args, **kwargs): - return self.val - -class not_equals(): - def __init__(self, val): - self.val = val - def __call__(self, x, *args, **kwargs): - return x != self.val - -class equals(): - def __init__(self, val): - self.val = val - def __call__(self, x, *args, **kwargs): - return x == self.val - -def Sequential(*modules): - return nn.Sequential(*filter(exists, modules)) - -# tensor helpers - -def max_neg_value(tensor): - return -torch.finfo(tensor.dtype).max - -def l2norm(t, groups = 1): - t = rearrange(t, '... (g d) -> ... g d', g = groups) - t = F.normalize(t, p = 2, dim = -1) - return rearrange(t, '... g d -> ... (g d)') - -def pad_at_dim(t, pad, dim = -1, value = 0.): - dims_from_right = (- dim - 1) if dim < 0 else (t.ndim - dim - 1) - zeros = ((0, 0) * dims_from_right) - return F.pad(t, (*zeros, *pad), value = value) - -def or_reduce(masks): - head, *body = masks - for rest in body: - head = head | rest - return head - -# auxiliary loss helpers - -def calc_z_loss( - pre_softmax_attns: List[Tensor], - mask = None, - weight = 1. -): - # the same loss applied to the mixture of experts router logits in https://arxiv.org/abs/2202.08906 - # in the paper, in a tiny footnote, they mention using it on attention logits with stabilizing effects - # also used in PaLM as one of the measures - - lse = 0. - - for attn in pre_softmax_attns: - lse = lse + attn.logsumexp(dim = -1) - - loss = torch.square(lse) - loss = reduce(loss, 'b h n -> b n', 'sum') - - if not exists(mask): - return loss.mean() * weight - - loss = loss[mask].sum() / mask.sum().clamp(min = 1e-5) - return loss * weight - -# init helpers - -def init_zero_(layer): - nn.init.constant_(layer.weight, 0.) - if exists(layer.bias): - nn.init.constant_(layer.bias, 0.) - -# keyword argument helpers - -def pick_and_pop(keys, d): - values = list(map(lambda key: d.pop(key), keys)) - return dict(zip(keys, values)) - -def group_dict_by_key(cond, d): - return_val = [dict(),dict()] - for key in d.keys(): - match = bool(cond(key)) - ind = int(not match) - return_val[ind][key] = d[key] - return (*return_val,) - -def string_begins_with(prefix, str): - return str.startswith(prefix) - -def group_by_key_prefix(prefix, d): - return group_dict_by_key(partial(string_begins_with, prefix), d) - -def groupby_prefix_and_trim(prefix, d): - kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d) - kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items()))) - return kwargs_without_prefix, kwargs - -# structured dropout, more effective than traditional attention dropouts - -def dropout_seq(seq, mask, dropout): - b, n, *_, device = *seq.shape, seq.device - logits = torch.randn(b, n, device = device) - - if exists(mask): - mask_value = max_neg_value(logits) - logits = logits.masked_fill(~mask, mask_value) - - keep_prob = 1. - dropout - num_keep = max(1, int(keep_prob * n)) - keep_indices = logits.topk(num_keep, dim = 1).indices - - batch_indices = torch.arange(b, device = device) - batch_indices = rearrange(batch_indices, 'b -> b 1') - - seq = seq[batch_indices, keep_indices] - - if exists(mask): - seq_counts = mask.sum(dim = -1) - seq_keep_counts = torch.ceil(seq_counts * keep_prob).int() - keep_mask = torch.arange(num_keep, device = device) < rearrange(seq_keep_counts, 'b -> b 1') - - mask = mask[batch_indices, keep_indices] & keep_mask - - return seq, mask - -# activations - -class ReluSquared(nn.Module): - def forward(self, x): - return F.relu(x) ** 2 - -# embedding - -class TokenEmbedding(nn.Module): - def __init__(self, dim, num_tokens, l2norm_embed = False): - super().__init__() - self.l2norm_embed = l2norm_embed - self.emb = nn.Embedding(num_tokens, dim) - - def forward(self, x): - token_emb = self.emb(x) - return l2norm(token_emb) if self.l2norm_embed else token_emb - -# positional embeddings - -class AbsolutePositionalEmbedding(nn.Module): - def __init__(self, dim, max_seq_len, l2norm_embed = False): - super().__init__() - self.scale = dim ** -0.5 if not l2norm_embed else 1. - self.max_seq_len = max_seq_len - self.l2norm_embed = l2norm_embed - self.emb = nn.Embedding(max_seq_len, dim) - - def forward(self, x, pos = None, seq_start_pos = None): - seq_len, device = x.shape[1], x.device - assert seq_len <= self.max_seq_len, f'you are passing in a sequence length of {seq_len} but your absolute positional embedding has a max sequence length of {self.max_seq_len}' - - if not exists(pos): - pos = torch.arange(seq_len, device = device) - - if exists(seq_start_pos): - pos = (pos - seq_start_pos[..., None]).clamp(min = 0) - - pos_emb = self.emb(pos) - pos_emb = pos_emb * self.scale - return l2norm(pos_emb) if self.l2norm_embed else pos_emb - -class ScaledSinusoidalEmbedding(nn.Module): - def __init__(self, dim, theta = 10000): - super().__init__() - assert divisible_by(dim, 2) - self.scale = nn.Parameter(torch.ones(1) * dim ** -0.5) - - half_dim = dim // 2 - freq_seq = torch.arange(half_dim).float() / half_dim - inv_freq = theta ** -freq_seq - self.register_buffer('inv_freq', inv_freq, persistent = False) - - def forward(self, x, pos = None, seq_start_pos = None): - seq_len, device = x.shape[1], x.device - - if not exists(pos): - pos = torch.arange(seq_len, device = device) - - if exists(seq_start_pos): - pos = pos - seq_start_pos[..., None] - - emb = einsum('i, j -> i j', pos, self.inv_freq) - emb = torch.cat((emb.sin(), emb.cos()), dim = -1) - return emb * self.scale - -class RelativePositionBias(nn.Module): - def __init__(self, scale, causal = False, num_buckets = 32, max_distance = 128, heads = 8): - super().__init__() - self.scale = scale - self.causal = causal - self.num_buckets = num_buckets - self.max_distance = max_distance - self.relative_attention_bias = nn.Embedding(num_buckets, heads) - - @staticmethod - def _relative_position_bucket(relative_position, causal = True, num_buckets = 32, max_distance = 128): - ret = 0 - n = -relative_position - if not causal: - num_buckets //= 2 - ret += (n < 0).long() * num_buckets - n = torch.abs(n) - else: - n = torch.max(n, torch.zeros_like(n)) - - max_exact = num_buckets // 2 - is_small = n < max_exact - - val_if_large = max_exact + ( - torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) - ).long() - val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) - - ret += torch.where(is_small, n, val_if_large) - return ret - - @property - def device(self): - return next(self.parameters()).device - - def forward(self, i, j): - device = self.device - q_pos = torch.arange(j - i, j, dtype = torch.long, device = device) - k_pos = torch.arange(j, dtype = torch.long, device = device) - rel_pos = k_pos[None, :] - q_pos[:, None] - rp_bucket = self._relative_position_bucket(rel_pos, causal = self.causal, num_buckets = self.num_buckets, max_distance = self.max_distance) - values = self.relative_attention_bias(rp_bucket) - bias = rearrange(values, 'i j h -> h i j') - return bias * self.scale - -class DynamicPositionBias(nn.Module): - def __init__(self, dim, *, heads, depth, log_distance = False, norm = False): - super().__init__() - assert depth >= 1, 'depth for dynamic position bias MLP must be greater or equal to 1' - self.log_distance = log_distance - - self.mlp = nn.ModuleList([]) - - self.mlp.append(Sequential( - nn.Linear(1, dim), - nn.LayerNorm(dim) if norm else None, - nn.SiLU() - )) - - for _ in range(depth - 1): - self.mlp.append(Sequential( - nn.Linear(dim, dim), - nn.LayerNorm(dim) if norm else None, - nn.SiLU() - )) - - self.mlp.append(nn.Linear(dim, heads)) - - @property - def device(self): - return next(self.parameters()).device - - def forward(self, i, j): - assert i == j - n, device = j, self.device - - # get the (n x n) matrix of distances - seq_arange = torch.arange(n, device = device) - context_arange = torch.arange(n, device = device) - indices = rearrange(seq_arange, 'i -> i 1') - rearrange(context_arange, 'j -> 1 j') - indices += (n - 1) - - # input to continuous positions MLP - pos = torch.arange(-n + 1, n, device = device).float() - pos = rearrange(pos, '... -> ... 1') - - if self.log_distance: - pos = torch.sign(pos) * torch.log(pos.abs() + 1) # log of distance is sign(rel_pos) * log(abs(rel_pos) + 1) - - for layer in self.mlp: - pos = layer(pos) - - # get position biases - bias = pos[indices] - bias = rearrange(bias, 'i j h -> h i j') - return bias - -class AlibiPositionalBias(nn.Module): - def __init__(self, heads, total_heads, **kwargs): - super().__init__() - self.heads = heads - self.total_heads = total_heads - - slopes = Tensor(self._get_slopes(heads)) - slopes = rearrange(slopes, 'h -> h 1 1') - self.register_buffer('slopes', slopes, persistent = False) - self.register_buffer('bias', None, persistent = False) - - def get_bias(self, i, j, device): - i_arange = torch.arange(j - i, j, device = device) - j_arange = torch.arange(j, device = device) - bias = -torch.abs(rearrange(j_arange, 'j -> 1 1 j') - rearrange(i_arange, 'i -> 1 i 1')) - return bias - - @staticmethod - def _get_slopes(heads): - def get_slopes_power_of_2(n): - start = (2**(-2**-(math.log2(n)-3))) - ratio = start - return [start*ratio**i for i in range(n)] - - if math.log2(heads).is_integer(): - return get_slopes_power_of_2(heads) - - closest_power_of_2 = 2 ** math.floor(math.log2(heads)) - return get_slopes_power_of_2(closest_power_of_2) + get_slopes_power_of_2(2 * closest_power_of_2)[0::2][:heads-closest_power_of_2] - - @property - def device(self): - return next(self.buffers()).device - - def forward(self, i, j): - h, device = self.total_heads, self.device - - if exists(self.bias) and self.bias.shape[-1] >= j and self.bias.shape[-2] >= i: - return self.bias[..., -i:, -j:] - - bias = self.get_bias(i, j, device) - bias = bias * self.slopes - - num_heads_unalibied = h - bias.shape[0] - bias = pad_at_dim(bias, (0, num_heads_unalibied), dim = 0) - self.register_buffer('bias', bias, persistent = False) - - return self.bias - -class RotaryEmbedding(nn.Module): - def __init__( - self, - dim, - use_xpos = False, - scale_base = 512, - interpolation_factor = 1., - base = 10000, - base_rescale_factor = 1. - ): - super().__init__() - # proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning - # has some connection to NTK literature - # https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/ - base *= base_rescale_factor ** (dim / (dim - 2)) - - inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim)) - self.register_buffer('inv_freq', inv_freq) - - assert interpolation_factor >= 1. - self.interpolation_factor = interpolation_factor - - if not use_xpos: - self.register_buffer('scale', None) - return - - scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim) - - self.scale_base = scale_base - self.register_buffer('scale', scale) - - def forward(self, seq_len): - device = self.inv_freq.device - t = torch.arange(seq_len, device = device).type_as(self.inv_freq) - - t = t / self.interpolation_factor - - freqs = torch.einsum('i , j -> i j', t, self.inv_freq) - freqs = torch.cat((freqs, freqs), dim = -1) - - if not exists(self.scale): - return freqs, 1. - - power = (torch.arange(seq_len, device = device) - (seq_len // 2)) / self.scale_base - scale = self.scale ** rearrange(power, 'n -> n 1') - scale = torch.cat((scale, scale), dim = -1) - - return freqs, scale - - -def rotate_half(x): - x = rearrange(x, '... (j d) -> ... j d', j = 2) - x1, x2 = x.unbind(dim = -2) - return torch.cat((-x2, x1), dim = -1) - -def apply_rotary_pos_emb(t, freqs, scale = 1): - rot_dim, seq_len = freqs.shape[-1], t.shape[-2] - freqs = freqs[-seq_len:, :] - - if t.ndim == 4 and freqs.ndim == 3: - freqs = rearrange(freqs, 'b n d -> b 1 n d') - - # partial rotary embeddings, Wang et al. GPT-J - t, t_unrotated = t[..., :rot_dim], t[..., rot_dim:] - t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale) - return torch.cat((t, t_unrotated), dim = -1) - -# norms - -class Scale(nn.Module): - def __init__(self, value, fn): - super().__init__() - self.value = value - self.fn = fn - - def forward(self, x, **kwargs): - out = self.fn(x, **kwargs) - scale_fn = lambda t: t * self.value - - if not isinstance(out, tuple): - return scale_fn(out) - - return (scale_fn(out[0]), *out[1:]) - -class ScaleNorm(nn.Module): - def __init__(self, dim, eps = 1e-5): - super().__init__() - self.eps = eps - self.g = nn.Parameter(torch.ones(1) * (dim ** -0.5)) - - def forward(self, x): - norm = torch.norm(x, dim = -1, keepdim = True) - return x / norm.clamp(min = self.eps) * self.g - -class RMSNorm(nn.Module): - def __init__(self, dim): - super().__init__() - self.scale = dim ** 0.5 - self.g = nn.Parameter(torch.ones(dim)) - - def forward(self, x): - return F.normalize(x, dim = -1) * self.scale * self.g - -class SimpleRMSNorm(nn.Module): - def __init__(self, dim): - super().__init__() - self.scale = dim ** 0.5 - - def forward(self, x): - return F.normalize(x, dim = -1) * self.scale - -# residual and residual gates - -class Residual(nn.Module): - def __init__(self, dim, scale_residual = False, scale_residual_constant = 1.): - super().__init__() - self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None - self.scale_residual_constant = scale_residual_constant - - def forward(self, x, residual): - if exists(self.residual_scale): - residual = residual * self.residual_scale - - if self.scale_residual_constant != 1: - residual = residual * self.scale_residual_constant - - return x + residual - -class GRUGating(nn.Module): - def __init__(self, dim, scale_residual = False, **kwargs): - super().__init__() - self.gru = nn.GRUCell(dim, dim) - self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None - - def forward(self, x, residual): - if exists(self.residual_scale): - residual = residual * self.residual_scale - - gated_output = self.gru( - rearrange(x, 'b n d -> (b n) d'), - rearrange(residual, 'b n d -> (b n) d') - ) - - return gated_output.reshape_as(x) - -# token shifting - -def shift(t, amount, mask = None): - if amount == 0: - return t - else: - amount = min(amount, t.shape[1]) - - if exists(mask): - t = t.masked_fill(~mask[..., None], 0.) - - return pad_at_dim(t, (amount, -amount), dim = - 2, value = 0.) - -class ShiftTokens(nn.Module): - def __init__(self, shifts, fn): - super().__init__() - self.fn = fn - self.shifts = tuple(shifts) - - def forward(self, x, **kwargs): - mask = kwargs.get('mask', None) - shifts = self.shifts - segments = len(shifts) - feats_per_shift = x.shape[-1] // segments - splitted = x.split(feats_per_shift, dim = -1) - segments_to_shift, rest = splitted[:segments], splitted[segments:] - segments_to_shift = list(map(lambda args: shift(*args, mask = mask), zip(segments_to_shift, shifts))) - x = torch.cat((*segments_to_shift, *rest), dim = -1) - return self.fn(x, **kwargs) - -# feedforward - -class GLU(nn.Module): - def __init__( - self, - dim_in, - dim_out, - activation: Callable, - mult_bias = False - ): - super().__init__() - self.act = activation - self.proj = nn.Linear(dim_in, dim_out * 2) - self.mult_bias = nn.Parameter(torch.ones(dim_out)) if mult_bias else 1. - - def forward(self, x): - x, gate = self.proj(x).chunk(2, dim = -1) - return x * self.act(gate) * self.mult_bias - -class FeedForward(nn.Module): - def __init__( - self, - dim, - dim_out = None, - mult = 4, - glu = False, - glu_mult_bias = False, - swish = False, - relu_squared = False, - post_act_ln = False, - dropout = 0., - no_bias = False, - zero_init_output = False - ): - super().__init__() - inner_dim = int(dim * mult) - dim_out = default(dim_out, dim) - - if relu_squared: - activation = ReluSquared() - elif swish: - activation = nn.SiLU() - else: - activation = nn.GELU() - - if glu: - project_in = GLU(dim, inner_dim, activation, mult_bias = glu_mult_bias) - else: - project_in = nn.Sequential( - nn.Linear(dim, inner_dim, bias = not no_bias), - activation - ) - - self.ff = Sequential( - project_in, - nn.LayerNorm(inner_dim) if post_act_ln else None, - nn.Dropout(dropout), - nn.Linear(inner_dim, dim_out, bias = not no_bias) - ) - - # init last linear layer to 0 - if zero_init_output: - init_zero_(self.ff[-1]) - - def forward(self, x): - return self.ff(x) - -# attention. it is all we need - -class Attention(nn.Module): - def __init__( - self, - dim, - dim_head = DEFAULT_DIM_HEAD, - heads = 8, - causal = False, - flash = False, - talking_heads = False, - head_scale = False, - sparse_topk = None, - num_mem_kv = 0, - dropout = 0., - on_attn = False, - gate_value_heads = False, - gate_values = False, - zero_init_output = False, - max_attend_past = None, - qk_norm = False, - qk_norm_groups = 1, - qk_norm_scale = 10, - qk_norm_dim_scale = False, - one_kv_head = False, - kv_heads = None, - shared_kv = False, - value_dim_head = None, - tensor_product = False, # https://arxiv.org/abs/2208.06061 - add_zero_kv = False, # same as add_zero_attn in pytorch - rotary_embed_values = False, - onnxable = False - ): - super().__init__() - self.scale = dim_head ** -0.5 - - self.heads = heads - self.causal = causal - self.max_attend_past = max_attend_past - - assert not (exists(kv_heads) and one_kv_head), 'either attn_one_kv_head is set to True (in which case kv_heads is set to 1), or attn_kv_heads is set, but not both' - - value_dim_head = default(value_dim_head, dim_head) - kv_heads = default(kv_heads, heads) - - kv_heads = 1 if one_kv_head else kv_heads - assert divisible_by(heads, kv_heads) - - self.kv_heads = kv_heads - - q_dim = dim_head * heads - k_dim = dim_head * kv_heads - v_dim = value_dim_head * kv_heads - out_dim = value_dim_head * heads - - self.to_q = nn.Linear(dim, q_dim, bias = False) - self.to_k = nn.Linear(dim, k_dim, bias = False) - - # shared key / values, for further memory savings during inference - assert not (shared_kv and value_dim_head != dim_head), 'key and value head dimensions must be equal for shared key / values' - self.to_v = nn.Linear(dim, v_dim, bias = False) if not shared_kv else None - - # relations projection from tp-attention - self.to_r = nn.Linear(dim, v_dim, bias = False) if tensor_product else None - - # add GLU gating for aggregated values, from alphafold2 - self.to_v_gate = None - if gate_values: - self.to_v_gate = nn.Linear(dim, out_dim) - nn.init.constant_(self.to_v_gate.weight, 0) - nn.init.constant_(self.to_v_gate.bias, 10) - - # add per head gating of the output values, from 'Attend to nothing' paper - self.to_v_head_gate = None - if gate_value_heads: - self.to_v_head_gate = nn.Linear(dim, heads) - nn.init.constant_(self.to_v_head_gate.weight, 0) - nn.init.constant_(self.to_v_head_gate.bias, 10) - - # cosine sim attention - self.qk_norm = qk_norm - self.qk_norm_groups = qk_norm_groups - self.qk_norm_scale = qk_norm_scale - - # whether to use the rmsnorm (equivalent to cosine sim attention when scale is equal to 1) - https://arxiv.org/abs/2302.05442 - self.qk_norm_dim_scale = qk_norm_dim_scale - - self.qk_norm_q_scale = self.qk_norm_k_scale = 1 - if qk_norm and qk_norm_dim_scale: - self.qk_norm_q_scale = nn.Parameter(torch.ones(heads, 1, dim_head)) - self.qk_norm_k_scale = nn.Parameter(torch.ones(heads, 1, dim_head)) - - assert (not qk_norm) or divisible_by(dim_head, qk_norm_groups), 'dimension per attention head must be divisible by the qk norm groups' - assert not (qk_norm and (dim_head // qk_norm_groups) <= 2), 'the group dimension may be too small (2 was too small in my tests, but 4 still works, surprisingly)' - - # attend class - includes core attention algorithm + talking heads - - self.attend = Attend( - heads = heads, - causal = causal, - talking_heads = talking_heads, - dropout = dropout, - sparse_topk = sparse_topk, - qk_norm = qk_norm, - scale = qk_norm_scale if qk_norm else self.scale, - add_zero_kv = add_zero_kv, - flash = flash, - onnxable = onnxable - ) - - # head scaling - self.head_scale = head_scale - if head_scale: - self.head_scale_params = nn.Parameter(torch.ones(1, heads, 1, 1)) - - # explicit topk sparse attention - self.sparse_topk = sparse_topk - - # add memory key / values - self.num_mem_kv = num_mem_kv - if num_mem_kv > 0: - self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) - self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) - - # attention on attention - self.attn_on_attn = on_attn - self.to_out = nn.Sequential(nn.Linear(out_dim, dim * 2, bias = False), nn.GLU()) if on_attn else nn.Linear(out_dim, dim, bias = False) - - # whether to rotate positions into values, for absolute positions in addition to relative - self.rotary_embed_values = rotary_embed_values - - # init output projection 0 - if zero_init_output: - init_zero_(self.to_out) - - def forward( - self, - x, - context = None, - mask = None, - context_mask = None, - attn_mask = None, - rel_pos = None, - rotary_pos_emb = None, - prev_attn = None, - mem = None, - return_intermediates = False, - cache: Optional[Intermediates] = None, - ): - b, n, _, h, kv_h, head_scale, device, has_context = *x.shape, self.heads, self.kv_heads, self.head_scale, x.device, exists(context) - kv_input = default(context, x) - - q_input = x - k_input = kv_input - v_input = kv_input - r_input = x - - if exists(mem): - k_input, mem_packed_shape = pack([mem, k_input], 'b * d') - v_input, _ = pack([mem, v_input], 'b * d') - - q = self.to_q(q_input) - k = self.to_k(k_input) - v = self.to_v(v_input) if exists(self.to_v) else k - r = self.to_r(r_input) if exists(self.to_r) else None - - q = rearrange(q, 'b n (h d) -> b h n d', h = h) - - k, v, r = map(lambda t: maybe(rearrange)(t, 'b n (h d) -> b h n d', h = kv_h), (k, v, r)) - - if exists(cache) and not has_context: - ck, cv = cache.cached_kv - - if exists(mem): - mk, k = unpack(k, mem_packed_shape, 'b h * d') - mv, v = unpack(v, mem_packed_shape, 'b h * d') - - k = torch.cat((ck, k), dim = -2) - v = torch.cat((cv, v), dim = -2) - - if exists(mem): - k = torch.cat((mk, k), dim = -2) - v = torch.cat((mv, v), dim = -2) - - if return_intermediates: - mem_len = mem.shape[-2] if exists(mem) else 0 - cached_kv = (k[..., mem_len:, :], v[..., mem_len:, :]) - - if self.qk_norm: - qk_l2norm = partial(l2norm, groups = self.qk_norm_groups) - q, k = map(qk_l2norm, (q, k)) - scale = self.qk_norm_scale - - q = q * self.qk_norm_q_scale - k = k * self.qk_norm_k_scale - - if exists(rotary_pos_emb) and not has_context: - freqs, xpos_scale = rotary_pos_emb - q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale ** -1.) if exists(xpos_scale) else (1., 1.) - - q = apply_rotary_pos_emb(q, freqs, q_xpos_scale) - k = apply_rotary_pos_emb(k, freqs, k_xpos_scale) - - if self.rotary_embed_values: - v = apply_rotary_pos_emb(v, freqs, k_xpos_scale) - - input_mask = context_mask - - if not exists(input_mask) and not has_context: - input_mask = mask - - if self.num_mem_kv > 0: - mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b = b), (self.mem_k, self.mem_v)) - - if self.qk_norm: - mem_k = l2norm(mem_k) - mem_k = mem_k * self.qk_norm_k_scale - - k = torch.cat((mem_k, k), dim = -2) - v = torch.cat((mem_v, v), dim = -2) - - if exists(input_mask): - input_mask = pad_at_dim(input_mask, (self.num_mem_kv, 0), dim = -1, value = True) - - i, j = map(lambda t: t.shape[-2], (q, k)) - - # determine masking - - mask_value = max_neg_value(q) - masks = [] - final_attn_mask = None - - if exists(input_mask): - input_mask = rearrange(input_mask, 'b j -> b 1 1 j') - masks.append(~input_mask) - - if exists(attn_mask): - assert 2 <= attn_mask.ndim <= 4, 'attention mask must have greater than 2 dimensions but less than or equal to 4' - if attn_mask.ndim == 2: - attn_mask = rearrange(attn_mask, 'i j -> 1 1 i j') - elif attn_mask.ndim == 3: - attn_mask = rearrange(attn_mask, 'h i j -> 1 h i j') - masks.append(~attn_mask) - - if exists(self.max_attend_past): - range_q = torch.arange(j - i, j, device = device) - range_k = torch.arange(j, device = device) - dist = rearrange(range_q, 'i -> 1 1 i 1') - rearrange(range_k, 'j -> 1 1 1 j') - max_attend_past_mask = dist > self.max_attend_past - masks.append(max_attend_past_mask) - - if len(masks) > 0: - final_attn_mask = ~or_reduce(masks) - - # prepare relative positional bias, if needed - - attn_bias = None - if exists(rel_pos): - attn_bias = rel_pos(i, j) - - # attention is all we need - - out, intermediates = self.attend( - q, k, v, - mask = final_attn_mask, - attn_bias = attn_bias, - prev_attn = prev_attn - ) - - # https://arxiv.org/abs/2208.06061 proposes to add a residual for better gradients - - if exists(r): - out = out * r + out - - # normformer scaling of heads - - if head_scale: - out = out * self.head_scale_params - - # per head gating, from https://arxiv.org/abs/2306.12929 - - if exists(self.to_v_head_gate): - head_gate = self.to_v_head_gate(x) - out = out * rearrange(head_gate, 'b n h -> b h n 1').sigmoid() - - # merge heads - - out = rearrange(out, 'b h n d -> b n (h d)') - - # alphafold2 styled gating of the values - - if exists(self.to_v_gate): - gates = self.to_v_gate(x) - out = out * gates.sigmoid() - - # combine the heads - - out = self.to_out(out) - - if exists(mask): - mask = rearrange(mask, 'b n -> b n 1') - out = out.masked_fill(~mask, 0.) - - if not return_intermediates: - return out - - intermediates.cached_kv = cached_kv - - return out, intermediates - -class AttentionLayers(nn.Module): - def __init__( - self, - dim, - depth, - heads = 8, - causal = False, - cross_attend = False, - only_cross = False, - use_scalenorm = False, - use_rmsnorm = False, - use_simple_rmsnorm = False, - alibi_pos_bias = False, - alibi_num_heads = None, - rel_pos_bias = False, - rel_pos_num_buckets = 32, - rel_pos_max_distance = 128, - dynamic_pos_bias = False, - dynamic_pos_bias_log_distance = False, - dynamic_pos_bias_mlp_depth = 2, - dynamic_pos_bias_norm = False, - rotary_pos_emb = False, - rotary_emb_dim = None, - rotary_xpos = False, - rotary_interpolation_factor = 1., - rotary_xpos_scale_base = 512, - rotary_base_rescale_factor = 1., - custom_layers = None, - sandwich_coef = None, - par_ratio = None, - weight_tie_layers = False, # Albert - https://arxiv.org/abs/1909.11942 - layers_execute_order = None, # generalizes weight tying, can do arbitrary layer execution orders - residual_attn = False, - cross_residual_attn = False, - macaron = False, - pre_norm = True, - pre_norm_has_final_norm = True, - gate_residual = False, - scale_residual = False, - scale_residual_constant = 1., - shift_tokens = 0, - sandwich_norm = False, - resi_dual = False, - resi_dual_scale = 1., - zero_init_branch_output = False, - layer_dropout = 0., - cross_attn_tokens_dropout = 0., - **kwargs - ): - super().__init__() - rotary_pos_emb = rotary_pos_emb or rotary_xpos - - ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs) - attn_kwargs, kwargs = groupby_prefix_and_trim('attn_', kwargs) - - dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD) - - self.dim = dim - self.depth = depth - self.causal = causal - self.layers = nn.ModuleList([]) - - self.has_pos_emb = rel_pos_bias or rotary_pos_emb - - rotary_emb_dim = max(default(rotary_emb_dim, dim_head // 2), 32) - - assert not (rotary_xpos and not causal), 'rotary xpos is not compatible with bidirectional attention' - self.rotary_pos_emb = RotaryEmbedding(rotary_emb_dim, use_xpos = rotary_xpos, scale_base = rotary_xpos_scale_base, interpolation_factor = rotary_interpolation_factor, base_rescale_factor = rotary_base_rescale_factor) if rotary_pos_emb else None - - assert not (alibi_pos_bias and rel_pos_bias), 'you can only choose Alibi positional bias or T5 relative positional bias, not both' - assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance' - - # relative positional bias - - flash_attn = attn_kwargs.get('flash', False) - assert (int(rel_pos_bias) + int(dynamic_pos_bias) + int(alibi_pos_bias)) <= 1, 'you can only choose up to one of t5, alibi, or dynamic positional bias' - - self.rel_pos = None - if rel_pos_bias: - assert not flash_attn, 'flash attention not compatible with t5 relative positional bias' - self.rel_pos = RelativePositionBias(scale = dim_head ** 0.5, causal = causal, heads = heads, num_buckets = rel_pos_num_buckets, max_distance = rel_pos_max_distance) - elif dynamic_pos_bias: - assert not flash_attn, 'flash attention not compatible with dynamic positional bias' - self.rel_pos = DynamicPositionBias(dim = dim // 4, heads = heads, log_distance = dynamic_pos_bias_log_distance, depth = dynamic_pos_bias_mlp_depth, norm = dynamic_pos_bias_norm) - elif alibi_pos_bias: - alibi_num_heads = default(alibi_num_heads, heads) - assert alibi_num_heads <= heads, 'number of ALiBi heads must be less than the total number of heads' - self.rel_pos = AlibiPositionalBias(heads = alibi_num_heads, total_heads = heads) - - assert (int(sandwich_norm) + int(resi_dual)) <= 1, 'either sandwich norm or resiDual is selected, but not both' - assert not (not pre_norm and sandwich_norm), 'sandwich norm cannot be used when not using prenorm' - - if resi_dual: - pre_norm = False - - self.pre_norm = pre_norm - self.sandwich_norm = sandwich_norm - - self.resi_dual = resi_dual - assert 0 < resi_dual_scale <= 1., 'resiDual prenorm residual must be scaled by a factor greater than 0 and less than or equal to 1.' - self.resi_dual_scale = resi_dual_scale - - self.residual_attn = residual_attn - self.cross_residual_attn = cross_residual_attn - assert not (flash_attn and (residual_attn or cross_residual_attn)), 'flash attention is not compatible with residual attention' - - self.cross_attend = cross_attend - - assert (int(use_scalenorm) + int(use_rmsnorm) + int(use_simple_rmsnorm)) <= 1, 'you can only use either scalenorm, rmsnorm, or simple rmsnorm' - - if use_scalenorm: - norm_class = ScaleNorm - elif use_rmsnorm: - norm_class = RMSNorm - elif use_simple_rmsnorm: - norm_class = SimpleRMSNorm - else: - norm_class = nn.LayerNorm - - norm_fn = partial(norm_class, dim) - - if cross_attend and not only_cross: - default_block = ('a', 'c', 'f') - elif cross_attend and only_cross: - default_block = ('c', 'f') - else: - default_block = ('a', 'f') - - if macaron: - default_block = ('f',) + default_block - - # zero init - - if zero_init_branch_output: - attn_kwargs = {**attn_kwargs, 'zero_init_output': True} - ff_kwargs = {**ff_kwargs, 'zero_init_output': True} - - # setup weight tying, which is a special case of `layer_execute_order` - - assert not (weight_tie_layers and any([*map(exists, (custom_layers, par_ratio, sandwich_coef))])) - - if weight_tie_layers: - assert not exists(layers_execute_order) - layers_execute_order = tuple(range(len(default_block))) * depth - depth = 1 - - # calculate layer block order - - if exists(custom_layers): - layer_types = custom_layers - elif exists(par_ratio): - par_depth = depth * len(default_block) - assert 1 < par_ratio <= par_depth, 'par ratio out of range' - default_block = tuple(filter(not_equals('f'), default_block)) - par_attn = par_depth // par_ratio - depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper - par_width = (depth_cut + depth_cut // par_attn) // par_attn - assert len(default_block) <= par_width, 'default block is too large for par_ratio' - par_block = default_block + ('f',) * (par_width - len(default_block)) - par_head = par_block * par_attn - layer_types = par_head + ('f',) * (par_depth - len(par_head)) - elif exists(sandwich_coef): - assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth' - layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef - else: - layer_types = default_block * depth - - self.layer_types = layer_types - self.layers_execute_order = default(layers_execute_order, tuple(range(len(layer_types)))) - - assert all([i < len(self.layer_types) for i in self.layers_execute_order]) - - self.num_attn_layers = len(list(filter(equals('a'), layer_types))) - - # stochastic depth - - self.layer_dropouts = cast_tuple(layer_dropout, len(layer_types)) - - # structured dropout for cross attending - - self.cross_attn_tokens_dropout = cross_attn_tokens_dropout - - # calculate token shifting - - shift_tokens = cast_tuple(shift_tokens, len(layer_types)) - - # whether it has post norm - - self.final_norm = norm_fn() if pre_norm or resi_dual else nn.Identity() - - # iterate and construct layers - - for ind, (layer_type, layer_shift_tokens) in enumerate(zip(self.layer_types, shift_tokens)): - is_last_layer = ind == (len(self.layer_types) - 1) - - if layer_type == 'a': - layer = Attention(dim, heads = heads, causal = causal, **attn_kwargs) - elif layer_type == 'c': - layer = Attention(dim, heads = heads, **attn_kwargs) - elif layer_type == 'f': - layer = FeedForward(dim, **ff_kwargs) - layer = layer if not macaron else Scale(0.5, layer) - else: - raise Exception(f'invalid layer type {layer_type}') - - if layer_shift_tokens > 0: - shift_range_upper = layer_shift_tokens + 1 - shift_range_lower = -layer_shift_tokens if not causal else 0 - layer = ShiftTokens(range(shift_range_lower, shift_range_upper), layer) - - residual_fn = GRUGating if gate_residual else Residual - residual = residual_fn(dim, scale_residual = scale_residual, scale_residual_constant = scale_residual_constant) - - pre_branch_norm = norm_fn() if pre_norm else None - post_branch_norm = norm_fn() if sandwich_norm else None - post_main_norm = norm_fn() if not pre_norm else None - - norms = nn.ModuleList([ - pre_branch_norm, - post_branch_norm, - post_main_norm - ]) - - self.layers.append(nn.ModuleList([ - norms, - layer, - residual - ])) - - def forward( - self, - x, - context = None, - mask = None, - context_mask = None, - attn_mask = None, - self_attn_kv_mask = None, - mems = None, - seq_start_pos: Optional[Tensor] = None, - cache: Optional[LayerIntermediates] = None, - cache_age = 1, - return_hiddens = False - ): - assert not (self.cross_attend ^ exists(context)), 'context must be passed in if cross_attend is set to True' - - # initialize accums - - hiddens = [] - layer_hiddens = [] - intermediates = [] - - prev_attn = None - prev_cross_attn = None - - mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers - - # handle left padded sequences - - if exists(seq_start_pos): - seq_arange = torch.arange(x.shape[-2], device = x.device, dtype = torch.long) - left_pad_mask = seq_arange >= seq_start_pos[..., None] - - if exists(self_attn_kv_mask): - self_attn_kv_mask = self_attn_kv_mask & left_pad_mask - else: - self_attn_kv_mask = left_pad_mask - - # rotary positions - - rotary_pos_emb = None - - if exists(self.rotary_pos_emb): - max_rotary_emb_length = max(list(map(lambda m: (m.shape[1] if exists(m) else 0) + x.shape[1], mems))) - rotary_pos_emb = self.rotary_pos_emb(max_rotary_emb_length) - - # assume cached key / values - - attn_cache = [] - - if exists(cache): - assert not self.training and self.causal and not any([*map(exists, (mask, attn_mask))]) - - if cache_age > 0: - x = x[:, -cache_age:] # for spec decoding, may be greater than 1 - - attn_cache = cache.attn_intermediates - - iter_attn_cache = iter(attn_cache) - - # outer residual - for resiDual paper - - outer_residual = x * self.resi_dual_scale - - # get layers to be executed - - layer_variables = ( - self.layer_types, - self.layers, - self.layer_dropouts - ) - - layer_variables = tuple(tuple(layer_variable[i] for i in self.layers_execute_order) for layer_variable in layer_variables) - - # go through the attention and feedforward layers - - for ind, (layer_type, (norm, block, residual_fn), layer_dropout) in enumerate(zip(*layer_variables)): - is_last = ind == (len(self.layers) - 1) - - if self.training and layer_dropout > 0. and random() < layer_dropout: - continue - - if layer_type == 'a': - if return_hiddens: - hiddens.append(x) - layer_mem = mems.pop(0) if mems else None - - if layer_type == 'c': - if self.training and self.cross_attn_tokens_dropout > 0.: - context, context_mask = dropout_seq(context, context_mask, self.cross_attn_tokens_dropout) - - inner_residual = x - - if return_hiddens: - layer_hiddens.append(x) - - pre_norm, post_branch_norm, post_main_norm = norm - - if exists(pre_norm): - x = pre_norm(x) - - if layer_type == 'a': - out, inter = block(x, mask = mask, context_mask = self_attn_kv_mask, attn_mask = attn_mask, rel_pos = self.rel_pos, rotary_pos_emb = rotary_pos_emb, prev_attn = prev_attn, cache = next(iter_attn_cache, None), mem = layer_mem, return_intermediates = True) - elif layer_type == 'c': - out, inter = block(x, context = context, mask = mask, context_mask = context_mask, prev_attn = prev_cross_attn, cache = next(iter_attn_cache, None), return_intermediates = True) - elif layer_type == 'f': - out = block(x) - - if self.resi_dual: - outer_residual = outer_residual + out * self.resi_dual_scale - - if exists(post_branch_norm): - out = post_branch_norm(out) - - x = residual_fn(out, inner_residual) - - if layer_type in ('a', 'c') and return_hiddens: - intermediates.append(inter) - - if layer_type == 'a' and self.residual_attn: - prev_attn = inter.pre_softmax_attn - elif layer_type == 'c' and self.cross_residual_attn: - prev_cross_attn = inter.pre_softmax_attn - - if exists(post_main_norm): - x = post_main_norm(x) - - if return_hiddens: - layer_hiddens.append(x) - - if self.resi_dual: - x = x + self.final_norm(outer_residual) - else: - x = self.final_norm(x) - - if not return_hiddens: - return x - - intermediates = LayerIntermediates( - hiddens = hiddens, - attn_intermediates = intermediates, - layer_hiddens = layer_hiddens - ) - - return x, intermediates - -class Encoder(AttentionLayers): - def __init__(self, **kwargs): - assert 'causal' not in kwargs, 'cannot set causality on encoder' - super().__init__(causal = False, **kwargs) - -class Decoder(AttentionLayers): - def __init__(self, **kwargs): - assert 'causal' not in kwargs, 'cannot set causality on decoder' - super().__init__(causal = True, **kwargs) - -class CrossAttender(AttentionLayers): - def __init__(self, **kwargs): - super().__init__(cross_attend = True, only_cross = True, **kwargs) - -class ViTransformerWrapper(nn.Module): - def __init__( - self, - *, - image_size, - patch_size, - attn_layers, - channels = 3, - num_classes = None, - post_emb_norm = False, - num_register_tokens = 0, - emb_dropout = 0. - ): - super().__init__() - assert isinstance(attn_layers, Encoder), 'attention layers must be an Encoder' - assert divisible_by(image_size, patch_size), 'image dimensions must be divisible by the patch size' - dim = attn_layers.dim - num_patches = (image_size // patch_size) ** 2 - patch_dim = channels * patch_size ** 2 - - self.patch_size = patch_size - - self.pos_embedding = nn.Parameter(torch.randn(1, num_patches, dim)) - - has_register_tokens = num_register_tokens > 0 - self.has_register_tokens = has_register_tokens - - if has_register_tokens: - self.register_tokens = nn.Parameter(torch.randn(num_register_tokens, dim)) - - self.patch_to_embedding = nn.Sequential( - nn.LayerNorm(patch_dim), - nn.Linear(patch_dim, dim), - nn.LayerNorm(dim) - ) - - self.post_emb_norm = nn.LayerNorm(dim) if post_emb_norm else nn.Identity() - self.dropout = nn.Dropout(emb_dropout) - - self.attn_layers = attn_layers - - self.mlp_head = nn.Linear(dim, num_classes) if exists(num_classes) else nn.Identity() - - def forward( - self, - img, - return_embeddings = False - ): - b, p = img.shape[0], self.patch_size - - x = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = p, p2 = p) - x = self.patch_to_embedding(x) - n = x.shape[1] - - x = x + self.pos_embedding[:, :n] - - x = self.post_emb_norm(x) - x = self.dropout(x) - - if self.has_register_tokens: - r = repeat(self.register_tokens, 'n d -> b n d', b = b) - x, ps = pack((x, r), 'b * d') - - x = self.attn_layers(x) - - if self.has_register_tokens: - x, _ = unpack(x, ps, 'b * d') - - if not exists(self.mlp_head) or return_embeddings: - return x - - x = x.mean(dim = -2) - return self.mlp_head(x) - -class TransformerWrapper(nn.Module): - def __init__( - self, - *, - num_tokens, - max_seq_len, - attn_layers, - emb_dim = None, - max_mem_len = 0, - shift_mem_down = 0, - emb_dropout = 0., - post_emb_norm = False, - num_memory_tokens = None, - memory_tokens_interspersed_every = None, - tie_embedding = False, - logits_dim = None, - use_abs_pos_emb = True, - scaled_sinu_pos_emb = False, - l2norm_embed = False, - emb_frac_gradient = 1., # GLM-130B and Cogview successfully used this, set at 0.1 - attn_z_loss_weight = 1e-4, - ): - super().__init__() - assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder' - - dim = attn_layers.dim - emb_dim = default(emb_dim, dim) - self.emb_dim = emb_dim - self.num_tokens = num_tokens - - self.max_seq_len = max_seq_len - self.max_mem_len = max_mem_len - self.shift_mem_down = shift_mem_down - - self.l2norm_embed = l2norm_embed - self.token_emb = TokenEmbedding(emb_dim, num_tokens, l2norm_embed = l2norm_embed) - - if not (use_abs_pos_emb and not attn_layers.has_pos_emb): - self.pos_emb = always(0) - elif scaled_sinu_pos_emb: - self.pos_emb = ScaledSinusoidalEmbedding(emb_dim) - else: - self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len, l2norm_embed = l2norm_embed) - - self.emb_frac_gradient = emb_frac_gradient # fraction of the gradient that should go to the embedding, https://arxiv.org/abs/2105.13290 - - self.post_emb_norm = nn.LayerNorm(emb_dim) if post_emb_norm else nn.Identity() - self.emb_dropout = nn.Dropout(emb_dropout) - - self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity() - self.attn_layers = attn_layers - - self.init_() - - logits_dim = default(logits_dim, num_tokens) - self.to_logits = nn.Linear(dim, logits_dim) if not tie_embedding else lambda t: t @ self.token_emb.emb.weight.t() - - # memory tokens (like [cls]) from Memory Transformers paper - - num_memory_tokens = default(num_memory_tokens, 0) - self.num_memory_tokens = num_memory_tokens - if num_memory_tokens > 0: - self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim)) - - self.memory_tokens_interspersed_every = memory_tokens_interspersed_every - - # whether can do cached kv decoding - - self.can_cache_kv = self.num_memory_tokens == 0 - - def init_(self): - if self.l2norm_embed: - nn.init.normal_(self.token_emb.emb.weight, std = 1e-5) - if not isinstance(self.pos_emb, always): - nn.init.normal_(self.pos_emb.emb.weight, std = 1e-5) - return - - nn.init.kaiming_normal_(self.token_emb.emb.weight) - - def forward( - self, - x, - return_embeddings = False, - return_logits_and_embeddings = False, - return_intermediates = False, - mask = None, - return_mems = False, - return_attn = False, - mems = None, - pos = None, - prepend_embeds = None, - sum_embeds = None, - return_attn_z_loss = False, - attn_z_loss_weight = 1e-4, - seq_start_pos = None, - cache: Optional[LayerIntermediates] = None, - **kwargs - ): - b, n, device, num_mems, has_memory_tokens, emb_frac_gradient = *x.shape, x.device, self.num_memory_tokens, self.num_memory_tokens > 0, self.emb_frac_gradient - return_hiddens = return_mems | return_attn | return_intermediates | return_attn_z_loss - - # absolute positional embedding - - external_pos_emb = exists(pos) and pos.dtype != torch.long - pos_emb = self.pos_emb(x, pos = pos, seq_start_pos = seq_start_pos) if not external_pos_emb else pos - x = self.token_emb(x) + pos_emb - - # for summing embeddings passed externally - needs this for self-conditioning in non-autoregressive training - - if exists(sum_embeds): - x = x + sum_embeds - - # post embedding norm, purportedly leads to greater stabilization - - x = self.post_emb_norm(x) - - # whether to append embeds, as in PaLI, for image embeddings - - if exists(prepend_embeds): - prepend_seq, prepend_dim = prepend_embeds.shape[1:] - assert prepend_dim == x.shape[-1], 'prepended embeddings need to have same dimensions as text model dimensions' - - x = torch.cat((prepend_embeds, x), dim = -2) - - # whether to reduce the gradient going to the embedding, from cogview paper, corroborated by GLM-130B model - - if emb_frac_gradient < 1: - assert emb_frac_gradient > 0 - x = x * emb_frac_gradient + x.detach() * (1 - emb_frac_gradient) - - # embedding dropout - - x = self.emb_dropout(x) - - x = self.project_emb(x) - - if has_memory_tokens: - mem_every = self.memory_tokens_interspersed_every - - if exists(mem_every): - assert mem_every > 0 - assert isinstance(self.attn_layers, Decoder), 'only for decoder' - next_seq_len = math.ceil(n / mem_every) * mem_every - - x = pad_at_dim(x, (0, next_seq_len - n), dim = -2, value = 0.) - x = rearrange(x, 'b (n m) d -> (b n) m d', m = mem_every) - - mem = repeat(self.memory_tokens, 'n d -> b n d', b = x.shape[0]) - x, mem_packed_shape = pack((mem, x), 'b * d') - - # auto-handle masking after appending memory tokens - if not exists(mem_every) and exists(mask): - mask = pad_at_dim(mask, (num_mems, 0), dim = -1, value = True) - - if exists(mem_every): - x = rearrange(x, '(b n) m d -> b (n m) d', b = b) - - if self.shift_mem_down and exists(mems): - mems_l, mems_r = mems[:self.shift_mem_down], mems[self.shift_mem_down:] - mems = [*mems_r, *mems_l] - - x, intermediates = self.attn_layers(x, mask = mask, mems = mems, cache = cache, return_hiddens = True, seq_start_pos = seq_start_pos, **kwargs) - - if has_memory_tokens: - if exists(mem_every): - x = rearrange(x, 'b (n m) d -> (b n) m d', m = (mem_every + num_mems)) - - mem, x = unpack(x, mem_packed_shape, 'b * d') - - if exists(mem_every): - x = rearrange(x, '(b n) m d -> b (n m) d', b = b) - - x = x[:, :n] - - if return_logits_and_embeddings: - out = (self.to_logits(x), x) - elif return_embeddings: - out = x - else: - out = self.to_logits(x) - - if return_attn_z_loss: - pre_softmax_attns = list(map(lambda t: t.pre_softmax_attn, intermediates.attn_intermediates)) - intermediates.attn_z_loss = calc_z_loss(pre_softmax_attns, weight = attn_z_loss_weight) - return_intermediates = True - - if return_mems: - hiddens = intermediates.hiddens - new_mems = list(map(lambda pair: torch.cat(pair, dim = -2), zip(mems, hiddens))) if exists(mems) else hiddens - new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems)) - - if not return_intermediates: - return out, new_mems - - intermediates.mems = new_mems - - if return_intermediates: - return out, intermediates - - if return_attn: - attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates)) - return out, attn_maps - - return out - -class ContinuousTransformerWrapper(nn.Module): - def __init__( - self, - *, - max_seq_len, - attn_layers, - dim_in = None, - dim_out = None, - emb_dim = None, - max_mem_len = 0, - post_emb_norm = False, - emb_dropout = 0., - use_abs_pos_emb = True, - scaled_sinu_pos_emb = False - ): - super().__init__() - assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder' - - dim = attn_layers.dim - - self.max_seq_len = max_seq_len - - self.max_mem_len = max_mem_len - - if not (use_abs_pos_emb and not attn_layers.has_pos_emb): - self.pos_emb = always(0) - elif scaled_sinu_pos_emb: - self.pos_emb = ScaledSinusoidalEmbedding(dim) - else: - self.pos_emb = AbsolutePositionalEmbedding(dim, max_seq_len) - - self.post_emb_norm = nn.LayerNorm(dim) if post_emb_norm else nn.Identity() - self.emb_dropout = nn.Dropout(emb_dropout) - - self.project_in = nn.Linear(dim_in, dim) if exists(dim_in) else nn.Identity() - - self.attn_layers = attn_layers - - self.project_out = nn.Linear(dim, dim_out) if exists(dim_out) else nn.Identity() - - def forward( - self, - x, - return_embeddings = False, - return_intermediates = False, - return_mems = False, - mask = None, - return_attn = False, - mems = None, - pos = None, - prepend_embeds = None, - **kwargs - ): - x = self.project_in(x) - x = x + self.pos_emb(x, pos = pos) - - x = self.post_emb_norm(x) - - # whether to append embeds, as in PaLI, for image embeddings - - if exists(prepend_embeds): - _, prepend_dim = prepend_embeds.shape[1:] - assert prepend_dim == x.shape[-1], 'prepended embeddings need to have same dimensions as model dimensions' - - x = torch.cat((prepend_embeds, x), dim = -2) - - x = self.emb_dropout(x) - - x, intermediates = self.attn_layers(x, mask = mask, mems = mems, return_hiddens = True, **kwargs) - - out = self.project_out(x) if not return_embeddings else x - - if return_intermediates: - return out, intermediates - - if return_mems: - hiddens = intermediates.hiddens - new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), hiddens)) - return out, new_mems - - if return_attn: - attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates)) - return out, attn_maps - - return out - -class XTransformer(nn.Module): - def __init__( - self, - *, - dim, - tie_token_emb = False, - ignore_index = -100, - pad_value = 0, - cross_attn_tokens_dropout = 0., - **kwargs - ): - super().__init__() - enc_kwargs, kwargs = groupby_prefix_and_trim('enc_', kwargs) - dec_kwargs, kwargs = groupby_prefix_and_trim('dec_', kwargs) - - assert 'dim' not in enc_kwargs and 'dim' not in dec_kwargs, 'dimension of either encoder or decoder must be set with `dim` keyword' - enc_transformer_kwargs = pick_and_pop(['num_tokens', 'max_seq_len'], enc_kwargs) - enc_transformer_kwargs['emb_dropout'] = enc_kwargs.pop('emb_dropout', 0) - enc_transformer_kwargs['num_memory_tokens'] = enc_kwargs.pop('num_memory_tokens', None) - enc_transformer_kwargs['scaled_sinu_pos_emb'] = enc_kwargs.pop('scaled_sinu_pos_emb', False) - enc_transformer_kwargs['use_abs_pos_emb'] = enc_kwargs.pop('use_abs_pos_emb', True) - - dec_transformer_kwargs = pick_and_pop(['num_tokens', 'max_seq_len'], dec_kwargs) - dec_transformer_kwargs['emb_dropout'] = dec_kwargs.pop('emb_dropout', 0) - dec_transformer_kwargs['scaled_sinu_pos_emb'] = dec_kwargs.pop('scaled_sinu_pos_emb', False) - dec_transformer_kwargs['use_abs_pos_emb'] = dec_kwargs.pop('use_abs_pos_emb', True) - - self.cross_attn_tokens_dropout = cross_attn_tokens_dropout # how many tokens from the encoder to dropout when cross attending from decoder - seen in a couple papers, including Perceiver AR - this will also be very effective regularization when cross attending to very long memories - - self.encoder = TransformerWrapper( - **enc_transformer_kwargs, - attn_layers = Encoder(dim = dim, **enc_kwargs) - ) - - self.decoder = TransformerWrapper( - **dec_transformer_kwargs, - attn_layers = Decoder(dim = dim, cross_attend = True, **dec_kwargs) - ) - - if tie_token_emb: - self.decoder.token_emb = self.encoder.token_emb - - self.decoder = AutoregressiveWrapper(self.decoder, ignore_index=ignore_index, pad_value=pad_value) - - @torch.no_grad() - def generate(self, seq_in, seq_out_start, seq_len, mask = None, attn_mask = None, **kwargs): - encodings = self.encoder(seq_in, mask = mask, attn_mask = attn_mask, return_embeddings = True) - return self.decoder.generate(seq_out_start, seq_len, context = encodings, context_mask = mask, **kwargs) - - def forward(self, src, tgt, mask = None, attn_mask = None, src_prepend_embeds = None): - - if exists(src_prepend_embeds) and exists(mask): - mask = pad_at_dim(mask, (src_prepend_embeds.shape[-2], 0), dim = -1, value = True) - - enc = self.encoder(src, mask = mask, attn_mask = attn_mask, prepend_embeds = src_prepend_embeds, return_embeddings = True) - - if self.training and self.cross_attn_tokens_dropout > 0: - enc, mask = dropout_seq(enc, mask, self.cross_attn_tokens_dropout) - - out = self.decoder(tgt, context = enc, context_mask = mask) +#=================================================================================================================== +# +# X Trasformer Module +# +# Partial x-transformers code With useful modifications +# +# Version 1.0 +# +# Original source code courtesy of lucidrains +# https://github.com/lucidrains/x-transformers +# +# Original source code retrieved on 10/10/2023 +# +# Project Los Angeles +# Tegridy Code 2023 + +#=================================================================================================================== + +# Critical dependencies +# +# !pip install torch +# !pip install einops + +#=================================================================================================================== + +from functools import partial +from typing import Optional, Tuple + +import torch +from torch import nn, einsum, Tensor +import torch.nn.functional as F +from torch.nn.attention import SDPBackend, sdpa_kernel + +from collections import namedtuple +from functools import wraps +from packaging import version +from dataclasses import dataclass + +from einops import rearrange, repeat + +# constants + +EfficientAttentionConfig = namedtuple('EfficientAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient']) + +@dataclass +class Intermediates: + qk_similarities: Optional[Tensor] = None + pre_softmax_attn: Optional[Tensor] = None + post_softmax_attn: Optional[Tensor] = None + cached_kv: Optional[Tuple[Tensor, Tensor]] = None + + def to_tuple(self): + return (self.qk_similarities, self.pre_softmax_attn, self.post_softmax_attn) + +# helpers + +def exists(val): + return val is not None + +def default(val, d): + return val if exists(val) else d + +def compact(arr): + return [*filter(exists, arr)] + +def once(fn): + called = False + @wraps(fn) + def inner(x): + nonlocal called + if called: + return + called = True + return fn(x) + return inner + +print_once = once(print) + +# functions for creating causal mask +# need a special one for onnx cpu (no support for .triu) + +def create_causal_mask(i, j, device): + return torch.ones((i, j), device = device, dtype = torch.bool).triu(j - i + 1) + +def onnx_create_causal_mask(i, j, device): + r = torch.arange(i, device = device) + causal_mask = rearrange(r, 'i -> i 1') < rearrange(r, 'j -> 1 j') + causal_mask = F.pad(causal_mask, (j - i, 0), value = False) + return causal_mask + +# main class + +class Attend(nn.Module): + def __init__( + self, + *, + dropout = 0., + causal = False, + heads = None, + talking_heads = False, + sparse_topk = None, + scale = None, + qk_norm = False, + flash = False, + add_zero_kv = False, + onnxable = False + ): + super().__init__() + self.scale = scale + self.qk_norm = qk_norm + + self.causal = causal + self.create_causal_mask = onnx_create_causal_mask if onnxable else create_causal_mask + + self.attn_fn = partial(F.softmax, dtype = torch.float32) if not qk_norm else F.softmax + + self.dropout = dropout + self.attn_dropout = nn.Dropout(dropout) + + # talking heads + + assert not (flash and talking_heads), 'talking heads not compatible with flash attention' + + self.talking_heads = talking_heads + if talking_heads: + self.pre_softmax_talking_heads = nn.Conv2d(heads, heads, 1, bias = False) + self.post_softmax_talking_heads = nn.Conv2d(heads, heads, 1, bias = False) + + # sparse topk + + assert not (flash and sparse_topk), 'sparse topk not compatible with flash attention' + self.sparse_topk = sparse_topk + + # add a key / value token composed of zeros + # in case this helps controlling outliers, proposed by https://www.evanmiller.org/attention-is-off-by-one.html + + self.add_zero_kv = add_zero_kv + + # flash attention + + self.flash = flash + assert not (flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above' + + # determine efficient attention configs for cuda and cpu + + self.cpu_config = EfficientAttentionConfig(True, True, True) + self.cuda_config = None + + if not torch.cuda.is_available() or not flash: + return + + device_properties = torch.cuda.get_device_properties(torch.device('cuda')) + + major, minor = device_properties.major, device_properties.minor + + if (major, minor) == (8, 0): + print_once('A100 GPU detected, using flash attention if input tensor is on cuda') + self.cuda_config = EfficientAttentionConfig(True, False, False) + elif (major, minor) == (9, 0): + print_once('H100 GPU detected, using flash attention') + self.cuda_config = EfficientAttentionConfig(True, False, False) + else: + print_once('Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda') + self.cuda_config = EfficientAttentionConfig(False, True, True) + + def flash_attn( + self, + q, k, v, + mask = None, + attn_bias = None + ): + batch, heads, q_len, _, k_len, is_cuda, device = *q.shape, k.shape[-2], q.is_cuda, q.device + + # Recommended for multi-query single-key-value attention by Tri Dao + # kv shape torch.Size([1, 512, 64]) -> torch.Size([1, 8, 512, 64]) + + if k.ndim == 3: + k = rearrange(k, 'b ... -> b 1 ...').expand_as(q) + + if v.ndim == 3: + v = rearrange(v, 'b ... -> b 1 ...').expand_as(q) + + # handle scale - by default they scale by dim_head ** -0.5, but need to take care if using cosine sim attention + + if self.qk_norm: + default_scale = q.shape[-1] ** -0.5 + q = q * (self.scale / default_scale) + + # Check if mask exists and expand to compatible shape + # The mask is B L, so it would have to be expanded to B H N L + + causal = self.causal + + # in the case of kv caching with one token (q_len == 1), just turn off causal masking + # in speculative decoding, this may go up to 5-6, so right aligned causal mask will be needed there + + if q_len == 1 and causal: + causal = False + + # expand key padding mask + + if exists(mask): + assert mask.ndim == 4 + mask = mask.expand(batch, heads, q_len, k_len) + + # handle kv cache - this should be bypassable in updated flash attention 2 + + if k_len > q_len and causal: + causal_mask = self.create_causal_mask(q_len, k_len, device = device) + if not exists(mask): + mask = ~causal_mask + else: + mask = mask & ~causal_mask + causal = False + + # manually handle causal mask, if another mask was given + + row_is_entirely_masked = None + + if exists(mask) and causal: + causal_mask = self.create_causal_mask(q_len, k_len, device = device) + mask = mask & ~causal_mask + + # protect against an entire row being masked out + + row_is_entirely_masked = ~mask.any(dim = -1) + mask[..., 0] = mask[..., 0] | row_is_entirely_masked + + causal = False + + # handle alibi positional bias + # convert from bool to float + + if exists(attn_bias): + attn_bias = rearrange(attn_bias, 'h i j -> 1 h i j').expand(batch, heads, -1, -1) + + # if mask given, the mask would already contain the causal mask from above logic + # otherwise, if no mask given but still causal, mask out alibi positional bias to a large negative number + + mask_value = -torch.finfo(q.dtype).max + + if exists(mask): + attn_bias = attn_bias.masked_fill(~mask, mask_value // 2) + elif causal: + causal_mask = self.create_causal_mask(q_len, k_len, device = device) + attn_bias = attn_bias.masked_fill(causal_mask, mask_value // 2) + causal = False + + # scaled_dot_product_attention handles attn_mask either as bool or additive bias + # make it an additive bias here + + mask = attn_bias + + # Check if there is a compatible device for flash attention + + config = self.cuda_config if is_cuda else self.cpu_config + + # pytorch 2.0 flash attn: q, k, v, mask, dropout, causal, softmax_scale + + # Legacy code... + # with torch.backends.cuda.sdp_kernel(enable_math=True, enable_mem_efficient=True): + + # New SDP kernel code... + # with sdpa_kernel(SDPBackend.FLASH_ATTENTION): + with sdpa_kernel([SDPBackend.MATH, SDPBackend.EFFICIENT_ATTENTION]): + + out = F.scaled_dot_product_attention( + q, k, v, + attn_mask = mask, + dropout_p = self.dropout if self.training else 0., + is_causal = causal + ) + + # for a row that is entirely masked out, should zero out the output of that row token + + if exists(row_is_entirely_masked): + out = out.masked_fill(row_is_entirely_masked[..., None], 0.) + + return out, Intermediates() + + def forward( + self, + q, k, v, + mask = None, + attn_bias = None, + prev_attn = None + ): + """ + einstein notation + b - batch + h - heads + n, i, j - sequence length (base sequence length, source, target) + d - feature dimension + """ + + n, heads, kv_heads, device = q.shape[-2], q.shape[1], k.shape[1], q.device + + scale = default(self.scale, q.shape[-1] ** -0.5) + + causal = self.causal + + # handle kv cached decoding + + if n == 1 and causal: + causal = False + + # handle grouped multi-query attention + + if kv_heads == 1: + k, v = map(lambda t: rearrange(t, 'b 1 n d -> b n d'), (k, v)) + elif kv_heads < heads: + k, v = map(lambda t: repeat(t, 'b kvh n d -> b (r kvh) n d', r = heads // kv_heads), (k, v)) + + # handle zero kv, as means for allowing network to attend to nothing + + if self.add_zero_kv: + k, v = map(lambda t: F.pad(t, (0, 0, 1, 0), value = 0.), (k, v)) + + if exists(mask): + mask = F.pad(mask, (1, 0), value = True) + + if exists(attn_bias): + attn_bias = F.pad(attn_bias, (1, 0), value = 0.) + + if self.flash: + assert not exists(prev_attn), 'residual attention not compatible with flash attention' + return self.flash_attn(q, k, v, mask = mask, attn_bias = attn_bias) + + kv_einsum_eq = 'b j d' if k.ndim == 3 else 'b h j d' + + dots = einsum(f'b h i d, {kv_einsum_eq} -> b h i j', q, k) * scale + + if exists(prev_attn): + dots = dots + prev_attn + + qk_similarities = dots.clone() + + if self.talking_heads: + dots = self.pre_softmax_talking_heads(dots) + + if exists(attn_bias): + dots = dots + attn_bias + + i, j, dtype = *dots.shape[-2:], dots.dtype + + mask_value = -torch.finfo(dots.dtype).max + + if exists(self.sparse_topk) and self.sparse_topk < j: + top_values, _ = dots.topk(self.sparse_topk, dim = -1) + sparse_topk_mask = dots < top_values[..., -1:] + mask = (mask & sparse_topk_mask) if exists(mask) else sparse_topk_mask + + if exists(mask): + dots = dots.masked_fill(~mask, mask_value) + + if causal: + causal_mask = self.create_causal_mask(i, j, device = device) + dots = dots.masked_fill(causal_mask, mask_value) + + pre_softmax_attn = dots.clone() + + attn = self.attn_fn(dots, dim = -1) + attn = attn.type(dtype) + + post_softmax_attn = attn.clone() + + attn = self.attn_dropout(attn) + + if self.talking_heads: + attn = self.post_softmax_talking_heads(attn) + + out = einsum(f'b h i j, {kv_einsum_eq} -> b h i d', attn, v) + + intermediates = Intermediates( + qk_similarities = qk_similarities, + pre_softmax_attn = pre_softmax_attn, + post_softmax_attn = post_softmax_attn + ) + + return out, intermediates + +#=================================================================================================================== + +from math import ceil, log +from typing import Optional, Union, Tuple, Callable + +import torch +from torch import nn, Tensor +from torch.nn import Module +import torch.nn.functional as F + +from einops import rearrange, pack, unpack + +def exists(val): + return val is not None + +def default(val, d): + return val if exists(val) else d + +def identity(t, *args, **kwargs): + return t + +def cast_tuple(t, length = 1): + return t if isinstance(t, tuple) else (t,) * length + +def eval_decorator(fn): + def inner(self, *args, **kwargs): + was_training = self.training + self.eval() + out = fn(self, *args, **kwargs) + self.train(was_training) + return out + return inner + +# for variable lengthed prefixes + +def align_right(t, lens, pad_id = 0): + batch, seq_len, device, dtype = *t.shape, t.device, t.dtype + + assert lens.ndim == 1 and lens.shape[0] == batch + assert lens.amax() <= seq_len + + pad_lens = seq_len - lens + max_pad_len = pad_lens.amax() + + batch_arange = torch.arange(batch, device = device, dtype = torch.long)[..., None] + prompt_len_arange = torch.arange(seq_len, device = device, dtype = torch.long) + + t = F.pad(t, (max_pad_len, 0), value = 0) + offset = max_pad_len - pad_lens + + aligned = t[batch_arange, prompt_len_arange + offset[..., None]] + return aligned + +# nucleus + +def top_p(logits, thres = 0.9): + sorted_logits, sorted_indices = torch.sort(logits, descending = True) + cum_probs = torch.cumsum(F.softmax(sorted_logits, dim = -1), dim = -1) + + sorted_indices_to_remove = cum_probs > thres + sorted_indices_to_remove = F.pad(sorted_indices_to_remove, (1, -1), value = False) + + sorted_logits[sorted_indices_to_remove] = float('-inf') + return sorted_logits.scatter(1, sorted_indices, sorted_logits) + +# topk + +def top_k(logits, frac_num_tokens = 0.1, k = None): + num_tokens = logits.shape[-1] + + k = default(k, ceil(frac_num_tokens * num_tokens)) + k = min(k, num_tokens) + + val, ind = torch.topk(logits, k) + probs = torch.full_like(logits, float('-inf')) + probs.scatter_(1, ind, val) + return probs + +# top_a + +def top_a(logits, min_p_pow = 2.0, min_p_ratio = 0.02): + probs = F.softmax(logits, dim = -1) + max_probs = torch.amax(probs, dim = -1, keepdim = True) + limit = torch.pow(max_probs, min_p_pow) * min_p_ratio + return torch.where(probs < limit, float('-inf'), logits) + +# contrastive decoding function + +def contrastive_decode_fn( + expert_logits, + amateur_logits, + alpha = 0.1, + beta = 0.5 +): + """ + Appendix A Algorithm 2 + https://arxiv.org/abs/2309.09117 + """ + + cutoff = log(alpha) + expert_logits.amax(dim = -1, keepdim = True) + diffs = (1 + beta) * expert_logits - beta * amateur_logits + contrastive_decode_logits = diffs.masked_fill(expert_logits < cutoff, -torch.finfo(expert_logits.dtype).max) + return contrastive_decode_logits + +# autoregressive wrapper class + +class AutoregressiveWrapper(Module): + def __init__( + self, + net, + ignore_index = -100, + pad_value = 0, + mask_prob = 0., + add_attn_z_loss = False + ): + super().__init__() + self.pad_value = pad_value + self.ignore_index = ignore_index + + self.net = net + self.max_seq_len = net.max_seq_len + + # paper shows masking (MLM) in conjunction with autoregressive decoder-only training leads to big improvements https://arxiv.org/abs/2210.13432 + assert mask_prob < 1. + self.mask_prob = mask_prob + + # whether to add router z-loss + self.add_attn_z_loss = add_attn_z_loss + + @torch.inference_mode() + @eval_decorator + def generate( + self, + prompts, + seq_len, + eos_token = None, + temperature = 1., + prompt_lens: Optional[Tensor] = None, + filter_logits_fn: Callable = top_k, + restrict_to_max_seq_len = True, + amateur_model: Optional[Union[Module, Tuple[Module]]] = None, + filter_kwargs: dict = dict(), + contrastive_decode_kwargs: Union[dict, Tuple[dict]] = dict( + beta = 0.5, + alpha = 0.1 + ), + cache_kv = True, + verbose=True, + return_prime=False, + **kwargs + ): + max_seq_len, device = self.max_seq_len, prompts.device + + prompts, ps = pack([prompts], '* n') + + b, t = prompts.shape + + # handle variable lengthed prompts (prefixes) + + seq_start_pos = None + if exists(prompt_lens): + prompts = align_right(prompts, prompt_lens, pad_id = self.pad_value) + seq_start_pos = t - prompt_lens + + # output from which sampled tokens appended to + + out = prompts + + if verbose: + print("Generating sequence of max length:", seq_len) + + # kv caches + + cache = None + + # if doing contrastive decoding, turn off filter automatically + + if exists(amateur_model): + amateur_model = cast_tuple(amateur_model) + contrastive_decode_kwargs = cast_tuple(contrastive_decode_kwargs) + + assert len(amateur_model) == len(contrastive_decode_kwargs) + + amateur_caches = [None] * len(amateur_model) + filter_logits_fn = identity + + for i, module in enumerate(amateur_model): + if isinstance(module, AutoregressiveWrapper): + amateur_model[i] = module.net + + module.eval() + + # sampling up to seq_len + + for sl in range(seq_len): + + if restrict_to_max_seq_len: + x = out[:, -max_seq_len:] + + if exists(cache): + for inter in cache.attn_intermediates: + inter.cached_kv = [t[..., -(max_seq_len - 1):, :] for t in inter.cached_kv] + + logits, new_cache = self.net( + x, + return_intermediates = True, + cache = cache, + seq_start_pos = seq_start_pos, + **kwargs + ) + + if cache_kv and self.net.can_cache_kv: + cache = new_cache + + logits = logits[:, -1] + + # handle contrastive decoding, Li et al. + # https://arxiv.org/abs/2210.15097 + + if exists(amateur_model): + for i, (amateur, amateur_cache, amateur_contrastive_decode_kwargs) in enumerate(zip(amateur_model, amateur_caches, contrastive_decode_kwargs)): + amateur_logits, next_amateur_cache = amateur( + x, + return_intermediates = True, + cache = amateur_cache, + seq_start_pos = seq_start_pos, + **kwargs + ) + + amateur_logits = amateur_logits[:, -1] + + assert amateur_logits.shape == logits.shape, 'logits dimension are not the same between amateur and expert model' + logits = contrastive_decode_fn(logits, amateur_logits, **amateur_contrastive_decode_kwargs) + + if cache_kv and amateur.can_cache_kv: + amateur_caches[i] = next_amateur_cache + + # filter by top_k, top_p (nucleus), top_a, or custom + + filtered_logits = filter_logits_fn(logits, **filter_kwargs) + + probs = F.softmax(filtered_logits / temperature, dim=-1) + + sample = torch.multinomial(probs, 1) + + out = torch.cat((out, sample), dim=-1) + + if verbose: + if sl % 32 == 0: + print(sl, '/', seq_len) + + if exists(eos_token): + is_eos_tokens = (out == eos_token) + + if is_eos_tokens.any(dim = -1).all(): + # mask out everything after the eos tokens + shifted_is_eos_tokens = F.pad(is_eos_tokens, (1, -1)) + mask = shifted_is_eos_tokens.float().cumsum(dim = -1) >= 1 + out = out.masked_fill(mask, self.pad_value) + + if verbose: + print('Model called the end of sequence at:', sl, '/', seq_len) + + break + + if return_prime: + return out[:, :] + + else: + return out[:, t:] + + # out, = unpack(out, ps, '* n') + + # return out + + def compute_accuracy(self, logits, labels): + out = torch.argmax(logits, dim=-1) + out = out.flatten() + labels = labels.flatten() + + mask = (labels != self.ignore_index) # can also be self.pad_value (your choice) + out = out[mask] + labels = labels[mask] + + num_right = (out == labels) + num_right = torch.sum(num_right).type(torch.float32) + + acc = num_right / len(labels) + return acc + + def forward(self, x, **kwargs): + seq, ignore_index, add_attn_z_loss = x.shape[1], self.ignore_index, self.add_attn_z_loss + + inp, target = x[:, :-1], x[:, 1:] + inp = torch.where(inp == ignore_index, self.pad_value, inp) + + if self.mask_prob > 0.: + rand = torch.randn(inp.shape, device = x.device) + rand[:, 0] = -torch.finfo(rand.dtype).max # first token should not be masked out + num_mask = min(int(seq * self.mask_prob), seq - 1) + indices = rand.topk(num_mask, dim = -1).indices + mask = ~torch.zeros_like(inp).scatter(1, indices, 1.).bool() + kwargs.update(self_attn_kv_mask = mask) + + logits, cache = self.net( + inp, + return_intermediates = True, + return_attn_z_loss = add_attn_z_loss, + **kwargs + ) + + acc = self.compute_accuracy(logits, target) + + loss = F.cross_entropy( + rearrange(logits, 'b n c -> b c n'), + target, + ignore_index = ignore_index + ) + + if add_attn_z_loss: + loss = loss + cache.attn_z_loss + + return loss, acc + +#=============================================================================== + +import math +from random import random + +import torch +from torch import nn, einsum, Tensor +import torch.nn.functional as F + +from functools import partial, wraps +from inspect import isfunction +from collections import namedtuple +from dataclasses import dataclass +from typing import List, Callable, Optional + +from einops import rearrange, repeat, reduce, pack, unpack +from einops.layers.torch import Rearrange + +# constants + +DEFAULT_DIM_HEAD = 64 + +@dataclass +class LayerIntermediates: + hiddens: Optional[List[Tensor]] = None + attn_intermediates: Optional[List[Intermediates]] = None + layer_hiddens: Optional[List[Tensor]] = None + attn_z_loss: Optional[Tensor] = None + mems: Optional[Tensor] = None + +# helpers + +def exists(val): + return val is not None + +def default(val, d): + if exists(val): + return val + return d() if isfunction(d) else d + +def cast_tuple(val, depth): + return val if isinstance(val, tuple) else (val,) * depth + +def divisible_by(num, den): + return (num % den) == 0 + +def maybe(fn): + @wraps(fn) + def inner(x, *args, **kwargs): + if not exists(x): + return x + return fn(x, *args, **kwargs) + return inner + +class always(): + def __init__(self, val): + self.val = val + def __call__(self, *args, **kwargs): + return self.val + +class not_equals(): + def __init__(self, val): + self.val = val + def __call__(self, x, *args, **kwargs): + return x != self.val + +class equals(): + def __init__(self, val): + self.val = val + def __call__(self, x, *args, **kwargs): + return x == self.val + +def Sequential(*modules): + return nn.Sequential(*filter(exists, modules)) + +# tensor helpers + +def max_neg_value(tensor): + return -torch.finfo(tensor.dtype).max + +def l2norm(t, groups = 1): + t = rearrange(t, '... (g d) -> ... g d', g = groups) + t = F.normalize(t, p = 2, dim = -1) + return rearrange(t, '... g d -> ... (g d)') + +def pad_at_dim(t, pad, dim = -1, value = 0.): + dims_from_right = (- dim - 1) if dim < 0 else (t.ndim - dim - 1) + zeros = ((0, 0) * dims_from_right) + return F.pad(t, (*zeros, *pad), value = value) + +def or_reduce(masks): + head, *body = masks + for rest in body: + head = head | rest + return head + +# auxiliary loss helpers + +def calc_z_loss( + pre_softmax_attns: List[Tensor], + mask = None, + weight = 1. +): + # the same loss applied to the mixture of experts router logits in https://arxiv.org/abs/2202.08906 + # in the paper, in a tiny footnote, they mention using it on attention logits with stabilizing effects + # also used in PaLM as one of the measures + + lse = 0. + + for attn in pre_softmax_attns: + lse = lse + attn.logsumexp(dim = -1) + + loss = torch.square(lse) + loss = reduce(loss, 'b h n -> b n', 'sum') + + if not exists(mask): + return loss.mean() * weight + + loss = loss[mask].sum() / mask.sum().clamp(min = 1e-5) + return loss * weight + +# init helpers + +def init_zero_(layer): + nn.init.constant_(layer.weight, 0.) + if exists(layer.bias): + nn.init.constant_(layer.bias, 0.) + +# keyword argument helpers + +def pick_and_pop(keys, d): + values = list(map(lambda key: d.pop(key), keys)) + return dict(zip(keys, values)) + +def group_dict_by_key(cond, d): + return_val = [dict(),dict()] + for key in d.keys(): + match = bool(cond(key)) + ind = int(not match) + return_val[ind][key] = d[key] + return (*return_val,) + +def string_begins_with(prefix, str): + return str.startswith(prefix) + +def group_by_key_prefix(prefix, d): + return group_dict_by_key(partial(string_begins_with, prefix), d) + +def groupby_prefix_and_trim(prefix, d): + kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d) + kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items()))) + return kwargs_without_prefix, kwargs + +# structured dropout, more effective than traditional attention dropouts + +def dropout_seq(seq, mask, dropout): + b, n, *_, device = *seq.shape, seq.device + logits = torch.randn(b, n, device = device) + + if exists(mask): + mask_value = max_neg_value(logits) + logits = logits.masked_fill(~mask, mask_value) + + keep_prob = 1. - dropout + num_keep = max(1, int(keep_prob * n)) + keep_indices = logits.topk(num_keep, dim = 1).indices + + batch_indices = torch.arange(b, device = device) + batch_indices = rearrange(batch_indices, 'b -> b 1') + + seq = seq[batch_indices, keep_indices] + + if exists(mask): + seq_counts = mask.sum(dim = -1) + seq_keep_counts = torch.ceil(seq_counts * keep_prob).int() + keep_mask = torch.arange(num_keep, device = device) < rearrange(seq_keep_counts, 'b -> b 1') + + mask = mask[batch_indices, keep_indices] & keep_mask + + return seq, mask + +# activations + +class ReluSquared(nn.Module): + def forward(self, x): + return F.relu(x) ** 2 + +# embedding + +class TokenEmbedding(nn.Module): + def __init__(self, dim, num_tokens, l2norm_embed = False): + super().__init__() + self.l2norm_embed = l2norm_embed + self.emb = nn.Embedding(num_tokens, dim) + + def forward(self, x): + token_emb = self.emb(x) + return l2norm(token_emb) if self.l2norm_embed else token_emb + +# positional embeddings + +class AbsolutePositionalEmbedding(nn.Module): + def __init__(self, dim, max_seq_len, l2norm_embed = False): + super().__init__() + self.scale = dim ** -0.5 if not l2norm_embed else 1. + self.max_seq_len = max_seq_len + self.l2norm_embed = l2norm_embed + self.emb = nn.Embedding(max_seq_len, dim) + + def forward(self, x, pos = None, seq_start_pos = None): + seq_len, device = x.shape[1], x.device + assert seq_len <= self.max_seq_len, f'you are passing in a sequence length of {seq_len} but your absolute positional embedding has a max sequence length of {self.max_seq_len}' + + if not exists(pos): + pos = torch.arange(seq_len, device = device) + + if exists(seq_start_pos): + pos = (pos - seq_start_pos[..., None]).clamp(min = 0) + + pos_emb = self.emb(pos) + pos_emb = pos_emb * self.scale + return l2norm(pos_emb) if self.l2norm_embed else pos_emb + +class ScaledSinusoidalEmbedding(nn.Module): + def __init__(self, dim, theta = 10000): + super().__init__() + assert divisible_by(dim, 2) + self.scale = nn.Parameter(torch.ones(1) * dim ** -0.5) + + half_dim = dim // 2 + freq_seq = torch.arange(half_dim).float() / half_dim + inv_freq = theta ** -freq_seq + self.register_buffer('inv_freq', inv_freq, persistent = False) + + def forward(self, x, pos = None, seq_start_pos = None): + seq_len, device = x.shape[1], x.device + + if not exists(pos): + pos = torch.arange(seq_len, device = device) + + if exists(seq_start_pos): + pos = pos - seq_start_pos[..., None] + + emb = einsum('i, j -> i j', pos, self.inv_freq) + emb = torch.cat((emb.sin(), emb.cos()), dim = -1) + return emb * self.scale + +class RelativePositionBias(nn.Module): + def __init__(self, scale, causal = False, num_buckets = 32, max_distance = 128, heads = 8): + super().__init__() + self.scale = scale + self.causal = causal + self.num_buckets = num_buckets + self.max_distance = max_distance + self.relative_attention_bias = nn.Embedding(num_buckets, heads) + + @staticmethod + def _relative_position_bucket(relative_position, causal = True, num_buckets = 32, max_distance = 128): + ret = 0 + n = -relative_position + if not causal: + num_buckets //= 2 + ret += (n < 0).long() * num_buckets + n = torch.abs(n) + else: + n = torch.max(n, torch.zeros_like(n)) + + max_exact = num_buckets // 2 + is_small = n < max_exact + + val_if_large = max_exact + ( + torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) + ).long() + val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) + + ret += torch.where(is_small, n, val_if_large) + return ret + + @property + def device(self): + return next(self.parameters()).device + + def forward(self, i, j): + device = self.device + q_pos = torch.arange(j - i, j, dtype = torch.long, device = device) + k_pos = torch.arange(j, dtype = torch.long, device = device) + rel_pos = k_pos[None, :] - q_pos[:, None] + rp_bucket = self._relative_position_bucket(rel_pos, causal = self.causal, num_buckets = self.num_buckets, max_distance = self.max_distance) + values = self.relative_attention_bias(rp_bucket) + bias = rearrange(values, 'i j h -> h i j') + return bias * self.scale + +class DynamicPositionBias(nn.Module): + def __init__(self, dim, *, heads, depth, log_distance = False, norm = False): + super().__init__() + assert depth >= 1, 'depth for dynamic position bias MLP must be greater or equal to 1' + self.log_distance = log_distance + + self.mlp = nn.ModuleList([]) + + self.mlp.append(Sequential( + nn.Linear(1, dim), + nn.LayerNorm(dim) if norm else None, + nn.SiLU() + )) + + for _ in range(depth - 1): + self.mlp.append(Sequential( + nn.Linear(dim, dim), + nn.LayerNorm(dim) if norm else None, + nn.SiLU() + )) + + self.mlp.append(nn.Linear(dim, heads)) + + @property + def device(self): + return next(self.parameters()).device + + def forward(self, i, j): + assert i == j + n, device = j, self.device + + # get the (n x n) matrix of distances + seq_arange = torch.arange(n, device = device) + context_arange = torch.arange(n, device = device) + indices = rearrange(seq_arange, 'i -> i 1') - rearrange(context_arange, 'j -> 1 j') + indices += (n - 1) + + # input to continuous positions MLP + pos = torch.arange(-n + 1, n, device = device).float() + pos = rearrange(pos, '... -> ... 1') + + if self.log_distance: + pos = torch.sign(pos) * torch.log(pos.abs() + 1) # log of distance is sign(rel_pos) * log(abs(rel_pos) + 1) + + for layer in self.mlp: + pos = layer(pos) + + # get position biases + bias = pos[indices] + bias = rearrange(bias, 'i j h -> h i j') + return bias + +class AlibiPositionalBias(nn.Module): + def __init__(self, heads, total_heads, **kwargs): + super().__init__() + self.heads = heads + self.total_heads = total_heads + + slopes = Tensor(self._get_slopes(heads)) + slopes = rearrange(slopes, 'h -> h 1 1') + self.register_buffer('slopes', slopes, persistent = False) + self.register_buffer('bias', None, persistent = False) + + def get_bias(self, i, j, device): + i_arange = torch.arange(j - i, j, device = device) + j_arange = torch.arange(j, device = device) + bias = -torch.abs(rearrange(j_arange, 'j -> 1 1 j') - rearrange(i_arange, 'i -> 1 i 1')) + return bias + + @staticmethod + def _get_slopes(heads): + def get_slopes_power_of_2(n): + start = (2**(-2**-(math.log2(n)-3))) + ratio = start + return [start*ratio**i for i in range(n)] + + if math.log2(heads).is_integer(): + return get_slopes_power_of_2(heads) + + closest_power_of_2 = 2 ** math.floor(math.log2(heads)) + return get_slopes_power_of_2(closest_power_of_2) + get_slopes_power_of_2(2 * closest_power_of_2)[0::2][:heads-closest_power_of_2] + + @property + def device(self): + return next(self.buffers()).device + + def forward(self, i, j): + h, device = self.total_heads, self.device + + if exists(self.bias) and self.bias.shape[-1] >= j and self.bias.shape[-2] >= i: + return self.bias[..., -i:, -j:] + + bias = self.get_bias(i, j, device) + bias = bias * self.slopes + + num_heads_unalibied = h - bias.shape[0] + bias = pad_at_dim(bias, (0, num_heads_unalibied), dim = 0) + self.register_buffer('bias', bias, persistent = False) + + return self.bias + +class RotaryEmbedding(nn.Module): + def __init__( + self, + dim, + use_xpos = False, + scale_base = 512, + interpolation_factor = 1., + base = 10000, + base_rescale_factor = 1. + ): + super().__init__() + # proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning + # has some connection to NTK literature + # https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/ + base *= base_rescale_factor ** (dim / (dim - 2)) + + inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim)) + self.register_buffer('inv_freq', inv_freq) + + assert interpolation_factor >= 1. + self.interpolation_factor = interpolation_factor + + if not use_xpos: + self.register_buffer('scale', None) + return + + scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim) + + self.scale_base = scale_base + self.register_buffer('scale', scale) + + def forward(self, seq_len): + device = self.inv_freq.device + t = torch.arange(seq_len, device = device).type_as(self.inv_freq) + + t = t / self.interpolation_factor + + freqs = torch.einsum('i , j -> i j', t, self.inv_freq) + freqs = torch.cat((freqs, freqs), dim = -1) + + if not exists(self.scale): + return freqs, 1. + + power = (torch.arange(seq_len, device = device) - (seq_len // 2)) / self.scale_base + scale = self.scale ** rearrange(power, 'n -> n 1') + scale = torch.cat((scale, scale), dim = -1) + + return freqs, scale + + +def rotate_half(x): + x = rearrange(x, '... (j d) -> ... j d', j = 2) + x1, x2 = x.unbind(dim = -2) + return torch.cat((-x2, x1), dim = -1) + +def apply_rotary_pos_emb(t, freqs, scale = 1): + rot_dim, seq_len = freqs.shape[-1], t.shape[-2] + freqs = freqs[-seq_len:, :] + + if t.ndim == 4 and freqs.ndim == 3: + freqs = rearrange(freqs, 'b n d -> b 1 n d') + + # partial rotary embeddings, Wang et al. GPT-J + t, t_unrotated = t[..., :rot_dim], t[..., rot_dim:] + t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale) + return torch.cat((t, t_unrotated), dim = -1) + +# norms + +class Scale(nn.Module): + def __init__(self, value, fn): + super().__init__() + self.value = value + self.fn = fn + + def forward(self, x, **kwargs): + out = self.fn(x, **kwargs) + scale_fn = lambda t: t * self.value + + if not isinstance(out, tuple): + return scale_fn(out) + + return (scale_fn(out[0]), *out[1:]) + +class ScaleNorm(nn.Module): + def __init__(self, dim, eps = 1e-5): + super().__init__() + self.eps = eps + self.g = nn.Parameter(torch.ones(1) * (dim ** -0.5)) + + def forward(self, x): + norm = torch.norm(x, dim = -1, keepdim = True) + return x / norm.clamp(min = self.eps) * self.g + +class RMSNorm(nn.Module): + def __init__(self, dim): + super().__init__() + self.scale = dim ** 0.5 + self.g = nn.Parameter(torch.ones(dim)) + + def forward(self, x): + return F.normalize(x, dim = -1) * self.scale * self.g + +class SimpleRMSNorm(nn.Module): + def __init__(self, dim): + super().__init__() + self.scale = dim ** 0.5 + + def forward(self, x): + return F.normalize(x, dim = -1) * self.scale + +# residual and residual gates + +class Residual(nn.Module): + def __init__(self, dim, scale_residual = False, scale_residual_constant = 1.): + super().__init__() + self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None + self.scale_residual_constant = scale_residual_constant + + def forward(self, x, residual): + if exists(self.residual_scale): + residual = residual * self.residual_scale + + if self.scale_residual_constant != 1: + residual = residual * self.scale_residual_constant + + return x + residual + +class GRUGating(nn.Module): + def __init__(self, dim, scale_residual = False, **kwargs): + super().__init__() + self.gru = nn.GRUCell(dim, dim) + self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None + + def forward(self, x, residual): + if exists(self.residual_scale): + residual = residual * self.residual_scale + + gated_output = self.gru( + rearrange(x, 'b n d -> (b n) d'), + rearrange(residual, 'b n d -> (b n) d') + ) + + return gated_output.reshape_as(x) + +# token shifting + +def shift(t, amount, mask = None): + if amount == 0: + return t + else: + amount = min(amount, t.shape[1]) + + if exists(mask): + t = t.masked_fill(~mask[..., None], 0.) + + return pad_at_dim(t, (amount, -amount), dim = - 2, value = 0.) + +class ShiftTokens(nn.Module): + def __init__(self, shifts, fn): + super().__init__() + self.fn = fn + self.shifts = tuple(shifts) + + def forward(self, x, **kwargs): + mask = kwargs.get('mask', None) + shifts = self.shifts + segments = len(shifts) + feats_per_shift = x.shape[-1] // segments + splitted = x.split(feats_per_shift, dim = -1) + segments_to_shift, rest = splitted[:segments], splitted[segments:] + segments_to_shift = list(map(lambda args: shift(*args, mask = mask), zip(segments_to_shift, shifts))) + x = torch.cat((*segments_to_shift, *rest), dim = -1) + return self.fn(x, **kwargs) + +# feedforward + +class GLU(nn.Module): + def __init__( + self, + dim_in, + dim_out, + activation: Callable, + mult_bias = False + ): + super().__init__() + self.act = activation + self.proj = nn.Linear(dim_in, dim_out * 2) + self.mult_bias = nn.Parameter(torch.ones(dim_out)) if mult_bias else 1. + + def forward(self, x): + x, gate = self.proj(x).chunk(2, dim = -1) + return x * self.act(gate) * self.mult_bias + +class FeedForward(nn.Module): + def __init__( + self, + dim, + dim_out = None, + mult = 4, + glu = False, + glu_mult_bias = False, + swish = False, + relu_squared = False, + post_act_ln = False, + dropout = 0., + no_bias = False, + zero_init_output = False + ): + super().__init__() + inner_dim = int(dim * mult) + dim_out = default(dim_out, dim) + + if relu_squared: + activation = ReluSquared() + elif swish: + activation = nn.SiLU() + else: + activation = nn.GELU() + + if glu: + project_in = GLU(dim, inner_dim, activation, mult_bias = glu_mult_bias) + else: + project_in = nn.Sequential( + nn.Linear(dim, inner_dim, bias = not no_bias), + activation + ) + + self.ff = Sequential( + project_in, + nn.LayerNorm(inner_dim) if post_act_ln else None, + nn.Dropout(dropout), + nn.Linear(inner_dim, dim_out, bias = not no_bias) + ) + + # init last linear layer to 0 + if zero_init_output: + init_zero_(self.ff[-1]) + + def forward(self, x): + return self.ff(x) + +# attention. it is all we need + +class Attention(nn.Module): + def __init__( + self, + dim, + dim_head = DEFAULT_DIM_HEAD, + heads = 8, + causal = False, + flash = False, + talking_heads = False, + head_scale = False, + sparse_topk = None, + num_mem_kv = 0, + dropout = 0., + on_attn = False, + gate_value_heads = False, + gate_values = False, + zero_init_output = False, + max_attend_past = None, + qk_norm = False, + qk_norm_groups = 1, + qk_norm_scale = 10, + qk_norm_dim_scale = False, + one_kv_head = False, + kv_heads = None, + shared_kv = False, + value_dim_head = None, + tensor_product = False, # https://arxiv.org/abs/2208.06061 + add_zero_kv = False, # same as add_zero_attn in pytorch + rotary_embed_values = False, + onnxable = False + ): + super().__init__() + self.scale = dim_head ** -0.5 + + self.heads = heads + self.causal = causal + self.max_attend_past = max_attend_past + + assert not (exists(kv_heads) and one_kv_head), 'either attn_one_kv_head is set to True (in which case kv_heads is set to 1), or attn_kv_heads is set, but not both' + + value_dim_head = default(value_dim_head, dim_head) + kv_heads = default(kv_heads, heads) + + kv_heads = 1 if one_kv_head else kv_heads + assert divisible_by(heads, kv_heads) + + self.kv_heads = kv_heads + + q_dim = dim_head * heads + k_dim = dim_head * kv_heads + v_dim = value_dim_head * kv_heads + out_dim = value_dim_head * heads + + self.to_q = nn.Linear(dim, q_dim, bias = False) + self.to_k = nn.Linear(dim, k_dim, bias = False) + + # shared key / values, for further memory savings during inference + assert not (shared_kv and value_dim_head != dim_head), 'key and value head dimensions must be equal for shared key / values' + self.to_v = nn.Linear(dim, v_dim, bias = False) if not shared_kv else None + + # relations projection from tp-attention + self.to_r = nn.Linear(dim, v_dim, bias = False) if tensor_product else None + + # add GLU gating for aggregated values, from alphafold2 + self.to_v_gate = None + if gate_values: + self.to_v_gate = nn.Linear(dim, out_dim) + nn.init.constant_(self.to_v_gate.weight, 0) + nn.init.constant_(self.to_v_gate.bias, 10) + + # add per head gating of the output values, from 'Attend to nothing' paper + self.to_v_head_gate = None + if gate_value_heads: + self.to_v_head_gate = nn.Linear(dim, heads) + nn.init.constant_(self.to_v_head_gate.weight, 0) + nn.init.constant_(self.to_v_head_gate.bias, 10) + + # cosine sim attention + self.qk_norm = qk_norm + self.qk_norm_groups = qk_norm_groups + self.qk_norm_scale = qk_norm_scale + + # whether to use the rmsnorm (equivalent to cosine sim attention when scale is equal to 1) - https://arxiv.org/abs/2302.05442 + self.qk_norm_dim_scale = qk_norm_dim_scale + + self.qk_norm_q_scale = self.qk_norm_k_scale = 1 + if qk_norm and qk_norm_dim_scale: + self.qk_norm_q_scale = nn.Parameter(torch.ones(heads, 1, dim_head)) + self.qk_norm_k_scale = nn.Parameter(torch.ones(heads, 1, dim_head)) + + assert (not qk_norm) or divisible_by(dim_head, qk_norm_groups), 'dimension per attention head must be divisible by the qk norm groups' + assert not (qk_norm and (dim_head // qk_norm_groups) <= 2), 'the group dimension may be too small (2 was too small in my tests, but 4 still works, surprisingly)' + + # attend class - includes core attention algorithm + talking heads + + self.attend = Attend( + heads = heads, + causal = causal, + talking_heads = talking_heads, + dropout = dropout, + sparse_topk = sparse_topk, + qk_norm = qk_norm, + scale = qk_norm_scale if qk_norm else self.scale, + add_zero_kv = add_zero_kv, + flash = flash, + onnxable = onnxable + ) + + # head scaling + self.head_scale = head_scale + if head_scale: + self.head_scale_params = nn.Parameter(torch.ones(1, heads, 1, 1)) + + # explicit topk sparse attention + self.sparse_topk = sparse_topk + + # add memory key / values + self.num_mem_kv = num_mem_kv + if num_mem_kv > 0: + self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) + self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) + + # attention on attention + self.attn_on_attn = on_attn + self.to_out = nn.Sequential(nn.Linear(out_dim, dim * 2, bias = False), nn.GLU()) if on_attn else nn.Linear(out_dim, dim, bias = False) + + # whether to rotate positions into values, for absolute positions in addition to relative + self.rotary_embed_values = rotary_embed_values + + # init output projection 0 + if zero_init_output: + init_zero_(self.to_out) + + def forward( + self, + x, + context = None, + mask = None, + context_mask = None, + attn_mask = None, + rel_pos = None, + rotary_pos_emb = None, + prev_attn = None, + mem = None, + return_intermediates = False, + cache: Optional[Intermediates] = None, + ): + b, n, _, h, kv_h, head_scale, device, has_context = *x.shape, self.heads, self.kv_heads, self.head_scale, x.device, exists(context) + kv_input = default(context, x) + + q_input = x + k_input = kv_input + v_input = kv_input + r_input = x + + if exists(mem): + k_input, mem_packed_shape = pack([mem, k_input], 'b * d') + v_input, _ = pack([mem, v_input], 'b * d') + + q = self.to_q(q_input) + k = self.to_k(k_input) + v = self.to_v(v_input) if exists(self.to_v) else k + r = self.to_r(r_input) if exists(self.to_r) else None + + q = rearrange(q, 'b n (h d) -> b h n d', h = h) + + k, v, r = map(lambda t: maybe(rearrange)(t, 'b n (h d) -> b h n d', h = kv_h), (k, v, r)) + + if exists(cache) and not has_context: + ck, cv = cache.cached_kv + + if exists(mem): + mk, k = unpack(k, mem_packed_shape, 'b h * d') + mv, v = unpack(v, mem_packed_shape, 'b h * d') + + k = torch.cat((ck, k), dim = -2) + v = torch.cat((cv, v), dim = -2) + + if exists(mem): + k = torch.cat((mk, k), dim = -2) + v = torch.cat((mv, v), dim = -2) + + if return_intermediates: + mem_len = mem.shape[-2] if exists(mem) else 0 + cached_kv = (k[..., mem_len:, :], v[..., mem_len:, :]) + + if self.qk_norm: + qk_l2norm = partial(l2norm, groups = self.qk_norm_groups) + q, k = map(qk_l2norm, (q, k)) + scale = self.qk_norm_scale + + q = q * self.qk_norm_q_scale + k = k * self.qk_norm_k_scale + + if exists(rotary_pos_emb) and not has_context: + freqs, xpos_scale = rotary_pos_emb + q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale ** -1.) if exists(xpos_scale) else (1., 1.) + + q = apply_rotary_pos_emb(q, freqs, q_xpos_scale) + k = apply_rotary_pos_emb(k, freqs, k_xpos_scale) + + if self.rotary_embed_values: + v = apply_rotary_pos_emb(v, freqs, k_xpos_scale) + + input_mask = context_mask + + if not exists(input_mask) and not has_context: + input_mask = mask + + if self.num_mem_kv > 0: + mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b = b), (self.mem_k, self.mem_v)) + + if self.qk_norm: + mem_k = l2norm(mem_k) + mem_k = mem_k * self.qk_norm_k_scale + + k = torch.cat((mem_k, k), dim = -2) + v = torch.cat((mem_v, v), dim = -2) + + if exists(input_mask): + input_mask = pad_at_dim(input_mask, (self.num_mem_kv, 0), dim = -1, value = True) + + i, j = map(lambda t: t.shape[-2], (q, k)) + + # determine masking + + mask_value = max_neg_value(q) + masks = [] + final_attn_mask = None + + if exists(input_mask): + input_mask = rearrange(input_mask, 'b j -> b 1 1 j') + masks.append(~input_mask) + + if exists(attn_mask): + assert 2 <= attn_mask.ndim <= 4, 'attention mask must have greater than 2 dimensions but less than or equal to 4' + if attn_mask.ndim == 2: + attn_mask = rearrange(attn_mask, 'i j -> 1 1 i j') + elif attn_mask.ndim == 3: + attn_mask = rearrange(attn_mask, 'h i j -> 1 h i j') + masks.append(~attn_mask) + + if exists(self.max_attend_past): + range_q = torch.arange(j - i, j, device = device) + range_k = torch.arange(j, device = device) + dist = rearrange(range_q, 'i -> 1 1 i 1') - rearrange(range_k, 'j -> 1 1 1 j') + max_attend_past_mask = dist > self.max_attend_past + masks.append(max_attend_past_mask) + + if len(masks) > 0: + final_attn_mask = ~or_reduce(masks) + + # prepare relative positional bias, if needed + + attn_bias = None + if exists(rel_pos): + attn_bias = rel_pos(i, j) + + # attention is all we need + + out, intermediates = self.attend( + q, k, v, + mask = final_attn_mask, + attn_bias = attn_bias, + prev_attn = prev_attn + ) + + # https://arxiv.org/abs/2208.06061 proposes to add a residual for better gradients + + if exists(r): + out = out * r + out + + # normformer scaling of heads + + if head_scale: + out = out * self.head_scale_params + + # per head gating, from https://arxiv.org/abs/2306.12929 + + if exists(self.to_v_head_gate): + head_gate = self.to_v_head_gate(x) + out = out * rearrange(head_gate, 'b n h -> b h n 1').sigmoid() + + # merge heads + + out = rearrange(out, 'b h n d -> b n (h d)') + + # alphafold2 styled gating of the values + + if exists(self.to_v_gate): + gates = self.to_v_gate(x) + out = out * gates.sigmoid() + + # combine the heads + + out = self.to_out(out) + + if exists(mask): + mask = rearrange(mask, 'b n -> b n 1') + out = out.masked_fill(~mask, 0.) + + if not return_intermediates: + return out + + intermediates.cached_kv = cached_kv + + return out, intermediates + +class AttentionLayers(nn.Module): + def __init__( + self, + dim, + depth, + heads = 8, + causal = False, + cross_attend = False, + only_cross = False, + use_scalenorm = False, + use_rmsnorm = False, + use_simple_rmsnorm = False, + alibi_pos_bias = False, + alibi_num_heads = None, + rel_pos_bias = False, + rel_pos_num_buckets = 32, + rel_pos_max_distance = 128, + dynamic_pos_bias = False, + dynamic_pos_bias_log_distance = False, + dynamic_pos_bias_mlp_depth = 2, + dynamic_pos_bias_norm = False, + rotary_pos_emb = False, + rotary_emb_dim = None, + rotary_xpos = False, + rotary_interpolation_factor = 1., + rotary_xpos_scale_base = 512, + rotary_base_rescale_factor = 1., + custom_layers = None, + sandwich_coef = None, + par_ratio = None, + weight_tie_layers = False, # Albert - https://arxiv.org/abs/1909.11942 + layers_execute_order = None, # generalizes weight tying, can do arbitrary layer execution orders + residual_attn = False, + cross_residual_attn = False, + macaron = False, + pre_norm = True, + pre_norm_has_final_norm = True, + gate_residual = False, + scale_residual = False, + scale_residual_constant = 1., + shift_tokens = 0, + sandwich_norm = False, + resi_dual = False, + resi_dual_scale = 1., + zero_init_branch_output = False, + layer_dropout = 0., + cross_attn_tokens_dropout = 0., + **kwargs + ): + super().__init__() + rotary_pos_emb = rotary_pos_emb or rotary_xpos + + ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs) + attn_kwargs, kwargs = groupby_prefix_and_trim('attn_', kwargs) + + dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD) + + self.dim = dim + self.depth = depth + self.causal = causal + self.layers = nn.ModuleList([]) + + self.has_pos_emb = rel_pos_bias or rotary_pos_emb + + rotary_emb_dim = max(default(rotary_emb_dim, dim_head // 2), 32) + + assert not (rotary_xpos and not causal), 'rotary xpos is not compatible with bidirectional attention' + self.rotary_pos_emb = RotaryEmbedding(rotary_emb_dim, use_xpos = rotary_xpos, scale_base = rotary_xpos_scale_base, interpolation_factor = rotary_interpolation_factor, base_rescale_factor = rotary_base_rescale_factor) if rotary_pos_emb else None + + assert not (alibi_pos_bias and rel_pos_bias), 'you can only choose Alibi positional bias or T5 relative positional bias, not both' + assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance' + + # relative positional bias + + flash_attn = attn_kwargs.get('flash', False) + assert (int(rel_pos_bias) + int(dynamic_pos_bias) + int(alibi_pos_bias)) <= 1, 'you can only choose up to one of t5, alibi, or dynamic positional bias' + + self.rel_pos = None + if rel_pos_bias: + assert not flash_attn, 'flash attention not compatible with t5 relative positional bias' + self.rel_pos = RelativePositionBias(scale = dim_head ** 0.5, causal = causal, heads = heads, num_buckets = rel_pos_num_buckets, max_distance = rel_pos_max_distance) + elif dynamic_pos_bias: + assert not flash_attn, 'flash attention not compatible with dynamic positional bias' + self.rel_pos = DynamicPositionBias(dim = dim // 4, heads = heads, log_distance = dynamic_pos_bias_log_distance, depth = dynamic_pos_bias_mlp_depth, norm = dynamic_pos_bias_norm) + elif alibi_pos_bias: + alibi_num_heads = default(alibi_num_heads, heads) + assert alibi_num_heads <= heads, 'number of ALiBi heads must be less than the total number of heads' + self.rel_pos = AlibiPositionalBias(heads = alibi_num_heads, total_heads = heads) + + assert (int(sandwich_norm) + int(resi_dual)) <= 1, 'either sandwich norm or resiDual is selected, but not both' + assert not (not pre_norm and sandwich_norm), 'sandwich norm cannot be used when not using prenorm' + + if resi_dual: + pre_norm = False + + self.pre_norm = pre_norm + self.sandwich_norm = sandwich_norm + + self.resi_dual = resi_dual + assert 0 < resi_dual_scale <= 1., 'resiDual prenorm residual must be scaled by a factor greater than 0 and less than or equal to 1.' + self.resi_dual_scale = resi_dual_scale + + self.residual_attn = residual_attn + self.cross_residual_attn = cross_residual_attn + assert not (flash_attn and (residual_attn or cross_residual_attn)), 'flash attention is not compatible with residual attention' + + self.cross_attend = cross_attend + + assert (int(use_scalenorm) + int(use_rmsnorm) + int(use_simple_rmsnorm)) <= 1, 'you can only use either scalenorm, rmsnorm, or simple rmsnorm' + + if use_scalenorm: + norm_class = ScaleNorm + elif use_rmsnorm: + norm_class = RMSNorm + elif use_simple_rmsnorm: + norm_class = SimpleRMSNorm + else: + norm_class = nn.LayerNorm + + norm_fn = partial(norm_class, dim) + + if cross_attend and not only_cross: + default_block = ('a', 'c', 'f') + elif cross_attend and only_cross: + default_block = ('c', 'f') + else: + default_block = ('a', 'f') + + if macaron: + default_block = ('f',) + default_block + + # zero init + + if zero_init_branch_output: + attn_kwargs = {**attn_kwargs, 'zero_init_output': True} + ff_kwargs = {**ff_kwargs, 'zero_init_output': True} + + # setup weight tying, which is a special case of `layer_execute_order` + + assert not (weight_tie_layers and any([*map(exists, (custom_layers, par_ratio, sandwich_coef))])) + + if weight_tie_layers: + assert not exists(layers_execute_order) + layers_execute_order = tuple(range(len(default_block))) * depth + depth = 1 + + # calculate layer block order + + if exists(custom_layers): + layer_types = custom_layers + elif exists(par_ratio): + par_depth = depth * len(default_block) + assert 1 < par_ratio <= par_depth, 'par ratio out of range' + default_block = tuple(filter(not_equals('f'), default_block)) + par_attn = par_depth // par_ratio + depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper + par_width = (depth_cut + depth_cut // par_attn) // par_attn + assert len(default_block) <= par_width, 'default block is too large for par_ratio' + par_block = default_block + ('f',) * (par_width - len(default_block)) + par_head = par_block * par_attn + layer_types = par_head + ('f',) * (par_depth - len(par_head)) + elif exists(sandwich_coef): + assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth' + layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef + else: + layer_types = default_block * depth + + self.layer_types = layer_types + self.layers_execute_order = default(layers_execute_order, tuple(range(len(layer_types)))) + + assert all([i < len(self.layer_types) for i in self.layers_execute_order]) + + self.num_attn_layers = len(list(filter(equals('a'), layer_types))) + + # stochastic depth + + self.layer_dropouts = cast_tuple(layer_dropout, len(layer_types)) + + # structured dropout for cross attending + + self.cross_attn_tokens_dropout = cross_attn_tokens_dropout + + # calculate token shifting + + shift_tokens = cast_tuple(shift_tokens, len(layer_types)) + + # whether it has post norm + + self.final_norm = norm_fn() if pre_norm or resi_dual else nn.Identity() + + # iterate and construct layers + + for ind, (layer_type, layer_shift_tokens) in enumerate(zip(self.layer_types, shift_tokens)): + is_last_layer = ind == (len(self.layer_types) - 1) + + if layer_type == 'a': + layer = Attention(dim, heads = heads, causal = causal, **attn_kwargs) + elif layer_type == 'c': + layer = Attention(dim, heads = heads, **attn_kwargs) + elif layer_type == 'f': + layer = FeedForward(dim, **ff_kwargs) + layer = layer if not macaron else Scale(0.5, layer) + else: + raise Exception(f'invalid layer type {layer_type}') + + if layer_shift_tokens > 0: + shift_range_upper = layer_shift_tokens + 1 + shift_range_lower = -layer_shift_tokens if not causal else 0 + layer = ShiftTokens(range(shift_range_lower, shift_range_upper), layer) + + residual_fn = GRUGating if gate_residual else Residual + residual = residual_fn(dim, scale_residual = scale_residual, scale_residual_constant = scale_residual_constant) + + pre_branch_norm = norm_fn() if pre_norm else None + post_branch_norm = norm_fn() if sandwich_norm else None + post_main_norm = norm_fn() if not pre_norm else None + + norms = nn.ModuleList([ + pre_branch_norm, + post_branch_norm, + post_main_norm + ]) + + self.layers.append(nn.ModuleList([ + norms, + layer, + residual + ])) + + def forward( + self, + x, + context = None, + mask = None, + context_mask = None, + attn_mask = None, + self_attn_kv_mask = None, + mems = None, + seq_start_pos: Optional[Tensor] = None, + cache: Optional[LayerIntermediates] = None, + cache_age = 1, + return_hiddens = False + ): + assert not (self.cross_attend ^ exists(context)), 'context must be passed in if cross_attend is set to True' + + # initialize accums + + hiddens = [] + layer_hiddens = [] + intermediates = [] + + prev_attn = None + prev_cross_attn = None + + mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers + + # handle left padded sequences + + if exists(seq_start_pos): + seq_arange = torch.arange(x.shape[-2], device = x.device, dtype = torch.long) + left_pad_mask = seq_arange >= seq_start_pos[..., None] + + if exists(self_attn_kv_mask): + self_attn_kv_mask = self_attn_kv_mask & left_pad_mask + else: + self_attn_kv_mask = left_pad_mask + + # rotary positions + + rotary_pos_emb = None + + if exists(self.rotary_pos_emb): + max_rotary_emb_length = max(list(map(lambda m: (m.shape[1] if exists(m) else 0) + x.shape[1], mems))) + rotary_pos_emb = self.rotary_pos_emb(max_rotary_emb_length) + + # assume cached key / values + + attn_cache = [] + + if exists(cache): + assert not self.training and self.causal and not any([*map(exists, (mask, attn_mask))]) + + if cache_age > 0: + x = x[:, -cache_age:] # for spec decoding, may be greater than 1 + + attn_cache = cache.attn_intermediates + + iter_attn_cache = iter(attn_cache) + + # outer residual - for resiDual paper + + outer_residual = x * self.resi_dual_scale + + # get layers to be executed + + layer_variables = ( + self.layer_types, + self.layers, + self.layer_dropouts + ) + + layer_variables = tuple(tuple(layer_variable[i] for i in self.layers_execute_order) for layer_variable in layer_variables) + + # go through the attention and feedforward layers + + for ind, (layer_type, (norm, block, residual_fn), layer_dropout) in enumerate(zip(*layer_variables)): + is_last = ind == (len(self.layers) - 1) + + if self.training and layer_dropout > 0. and random() < layer_dropout: + continue + + if layer_type == 'a': + if return_hiddens: + hiddens.append(x) + layer_mem = mems.pop(0) if mems else None + + if layer_type == 'c': + if self.training and self.cross_attn_tokens_dropout > 0.: + context, context_mask = dropout_seq(context, context_mask, self.cross_attn_tokens_dropout) + + inner_residual = x + + if return_hiddens: + layer_hiddens.append(x) + + pre_norm, post_branch_norm, post_main_norm = norm + + if exists(pre_norm): + x = pre_norm(x) + + if layer_type == 'a': + out, inter = block(x, mask = mask, context_mask = self_attn_kv_mask, attn_mask = attn_mask, rel_pos = self.rel_pos, rotary_pos_emb = rotary_pos_emb, prev_attn = prev_attn, cache = next(iter_attn_cache, None), mem = layer_mem, return_intermediates = True) + elif layer_type == 'c': + out, inter = block(x, context = context, mask = mask, context_mask = context_mask, prev_attn = prev_cross_attn, cache = next(iter_attn_cache, None), return_intermediates = True) + elif layer_type == 'f': + out = block(x) + + if self.resi_dual: + outer_residual = outer_residual + out * self.resi_dual_scale + + if exists(post_branch_norm): + out = post_branch_norm(out) + + x = residual_fn(out, inner_residual) + + if layer_type in ('a', 'c') and return_hiddens: + intermediates.append(inter) + + if layer_type == 'a' and self.residual_attn: + prev_attn = inter.pre_softmax_attn + elif layer_type == 'c' and self.cross_residual_attn: + prev_cross_attn = inter.pre_softmax_attn + + if exists(post_main_norm): + x = post_main_norm(x) + + if return_hiddens: + layer_hiddens.append(x) + + if self.resi_dual: + x = x + self.final_norm(outer_residual) + else: + x = self.final_norm(x) + + if not return_hiddens: + return x + + intermediates = LayerIntermediates( + hiddens = hiddens, + attn_intermediates = intermediates, + layer_hiddens = layer_hiddens + ) + + return x, intermediates + +class Encoder(AttentionLayers): + def __init__(self, **kwargs): + assert 'causal' not in kwargs, 'cannot set causality on encoder' + super().__init__(causal = False, **kwargs) + +class Decoder(AttentionLayers): + def __init__(self, **kwargs): + assert 'causal' not in kwargs, 'cannot set causality on decoder' + super().__init__(causal = True, **kwargs) + +class CrossAttender(AttentionLayers): + def __init__(self, **kwargs): + super().__init__(cross_attend = True, only_cross = True, **kwargs) + +class ViTransformerWrapper(nn.Module): + def __init__( + self, + *, + image_size, + patch_size, + attn_layers, + channels = 3, + num_classes = None, + post_emb_norm = False, + num_register_tokens = 0, + emb_dropout = 0. + ): + super().__init__() + assert isinstance(attn_layers, Encoder), 'attention layers must be an Encoder' + assert divisible_by(image_size, patch_size), 'image dimensions must be divisible by the patch size' + dim = attn_layers.dim + num_patches = (image_size // patch_size) ** 2 + patch_dim = channels * patch_size ** 2 + + self.patch_size = patch_size + + self.pos_embedding = nn.Parameter(torch.randn(1, num_patches, dim)) + + has_register_tokens = num_register_tokens > 0 + self.has_register_tokens = has_register_tokens + + if has_register_tokens: + self.register_tokens = nn.Parameter(torch.randn(num_register_tokens, dim)) + + self.patch_to_embedding = nn.Sequential( + nn.LayerNorm(patch_dim), + nn.Linear(patch_dim, dim), + nn.LayerNorm(dim) + ) + + self.post_emb_norm = nn.LayerNorm(dim) if post_emb_norm else nn.Identity() + self.dropout = nn.Dropout(emb_dropout) + + self.attn_layers = attn_layers + + self.mlp_head = nn.Linear(dim, num_classes) if exists(num_classes) else nn.Identity() + + def forward( + self, + img, + return_embeddings = False + ): + b, p = img.shape[0], self.patch_size + + x = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = p, p2 = p) + x = self.patch_to_embedding(x) + n = x.shape[1] + + x = x + self.pos_embedding[:, :n] + + x = self.post_emb_norm(x) + x = self.dropout(x) + + if self.has_register_tokens: + r = repeat(self.register_tokens, 'n d -> b n d', b = b) + x, ps = pack((x, r), 'b * d') + + x = self.attn_layers(x) + + if self.has_register_tokens: + x, _ = unpack(x, ps, 'b * d') + + if not exists(self.mlp_head) or return_embeddings: + return x + + x = x.mean(dim = -2) + return self.mlp_head(x) + +class TransformerWrapper(nn.Module): + def __init__( + self, + *, + num_tokens, + max_seq_len, + attn_layers, + emb_dim = None, + max_mem_len = 0, + shift_mem_down = 0, + emb_dropout = 0., + post_emb_norm = False, + num_memory_tokens = None, + memory_tokens_interspersed_every = None, + tie_embedding = False, + logits_dim = None, + use_abs_pos_emb = True, + scaled_sinu_pos_emb = False, + l2norm_embed = False, + emb_frac_gradient = 1., # GLM-130B and Cogview successfully used this, set at 0.1 + attn_z_loss_weight = 1e-4, + ): + super().__init__() + assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder' + + dim = attn_layers.dim + emb_dim = default(emb_dim, dim) + self.emb_dim = emb_dim + self.num_tokens = num_tokens + + self.max_seq_len = max_seq_len + self.max_mem_len = max_mem_len + self.shift_mem_down = shift_mem_down + + self.l2norm_embed = l2norm_embed + self.token_emb = TokenEmbedding(emb_dim, num_tokens, l2norm_embed = l2norm_embed) + + if not (use_abs_pos_emb and not attn_layers.has_pos_emb): + self.pos_emb = always(0) + elif scaled_sinu_pos_emb: + self.pos_emb = ScaledSinusoidalEmbedding(emb_dim) + else: + self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len, l2norm_embed = l2norm_embed) + + self.emb_frac_gradient = emb_frac_gradient # fraction of the gradient that should go to the embedding, https://arxiv.org/abs/2105.13290 + + self.post_emb_norm = nn.LayerNorm(emb_dim) if post_emb_norm else nn.Identity() + self.emb_dropout = nn.Dropout(emb_dropout) + + self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity() + self.attn_layers = attn_layers + + self.init_() + + logits_dim = default(logits_dim, num_tokens) + self.to_logits = nn.Linear(dim, logits_dim) if not tie_embedding else lambda t: t @ self.token_emb.emb.weight.t() + + # memory tokens (like [cls]) from Memory Transformers paper + + num_memory_tokens = default(num_memory_tokens, 0) + self.num_memory_tokens = num_memory_tokens + if num_memory_tokens > 0: + self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim)) + + self.memory_tokens_interspersed_every = memory_tokens_interspersed_every + + # whether can do cached kv decoding + + self.can_cache_kv = self.num_memory_tokens == 0 + + def init_(self): + if self.l2norm_embed: + nn.init.normal_(self.token_emb.emb.weight, std = 1e-5) + if not isinstance(self.pos_emb, always): + nn.init.normal_(self.pos_emb.emb.weight, std = 1e-5) + return + + nn.init.kaiming_normal_(self.token_emb.emb.weight) + + def forward( + self, + x, + return_embeddings = False, + return_logits_and_embeddings = False, + return_intermediates = False, + mask = None, + return_mems = False, + return_attn = False, + mems = None, + pos = None, + prepend_embeds = None, + sum_embeds = None, + return_attn_z_loss = False, + attn_z_loss_weight = 1e-4, + seq_start_pos = None, + cache: Optional[LayerIntermediates] = None, + **kwargs + ): + b, n, device, num_mems, has_memory_tokens, emb_frac_gradient = *x.shape, x.device, self.num_memory_tokens, self.num_memory_tokens > 0, self.emb_frac_gradient + return_hiddens = return_mems | return_attn | return_intermediates | return_attn_z_loss + + # absolute positional embedding + + external_pos_emb = exists(pos) and pos.dtype != torch.long + pos_emb = self.pos_emb(x, pos = pos, seq_start_pos = seq_start_pos) if not external_pos_emb else pos + x = self.token_emb(x) + pos_emb + + # for summing embeddings passed externally - needs this for self-conditioning in non-autoregressive training + + if exists(sum_embeds): + x = x + sum_embeds + + # post embedding norm, purportedly leads to greater stabilization + + x = self.post_emb_norm(x) + + # whether to append embeds, as in PaLI, for image embeddings + + if exists(prepend_embeds): + prepend_seq, prepend_dim = prepend_embeds.shape[1:] + assert prepend_dim == x.shape[-1], 'prepended embeddings need to have same dimensions as text model dimensions' + + x = torch.cat((prepend_embeds, x), dim = -2) + + # whether to reduce the gradient going to the embedding, from cogview paper, corroborated by GLM-130B model + + if emb_frac_gradient < 1: + assert emb_frac_gradient > 0 + x = x * emb_frac_gradient + x.detach() * (1 - emb_frac_gradient) + + # embedding dropout + + x = self.emb_dropout(x) + + x = self.project_emb(x) + + if has_memory_tokens: + mem_every = self.memory_tokens_interspersed_every + + if exists(mem_every): + assert mem_every > 0 + assert isinstance(self.attn_layers, Decoder), 'only for decoder' + next_seq_len = math.ceil(n / mem_every) * mem_every + + x = pad_at_dim(x, (0, next_seq_len - n), dim = -2, value = 0.) + x = rearrange(x, 'b (n m) d -> (b n) m d', m = mem_every) + + mem = repeat(self.memory_tokens, 'n d -> b n d', b = x.shape[0]) + x, mem_packed_shape = pack((mem, x), 'b * d') + + # auto-handle masking after appending memory tokens + if not exists(mem_every) and exists(mask): + mask = pad_at_dim(mask, (num_mems, 0), dim = -1, value = True) + + if exists(mem_every): + x = rearrange(x, '(b n) m d -> b (n m) d', b = b) + + if self.shift_mem_down and exists(mems): + mems_l, mems_r = mems[:self.shift_mem_down], mems[self.shift_mem_down:] + mems = [*mems_r, *mems_l] + + x, intermediates = self.attn_layers(x, mask = mask, mems = mems, cache = cache, return_hiddens = True, seq_start_pos = seq_start_pos, **kwargs) + + if has_memory_tokens: + if exists(mem_every): + x = rearrange(x, 'b (n m) d -> (b n) m d', m = (mem_every + num_mems)) + + mem, x = unpack(x, mem_packed_shape, 'b * d') + + if exists(mem_every): + x = rearrange(x, '(b n) m d -> b (n m) d', b = b) + + x = x[:, :n] + + if return_logits_and_embeddings: + out = (self.to_logits(x), x) + elif return_embeddings: + out = x + else: + out = self.to_logits(x) + + if return_attn_z_loss: + pre_softmax_attns = list(map(lambda t: t.pre_softmax_attn, intermediates.attn_intermediates)) + intermediates.attn_z_loss = calc_z_loss(pre_softmax_attns, weight = attn_z_loss_weight) + return_intermediates = True + + if return_mems: + hiddens = intermediates.hiddens + new_mems = list(map(lambda pair: torch.cat(pair, dim = -2), zip(mems, hiddens))) if exists(mems) else hiddens + new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems)) + + if not return_intermediates: + return out, new_mems + + intermediates.mems = new_mems + + if return_intermediates: + return out, intermediates + + if return_attn: + attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates)) + return out, attn_maps + + return out + +class ContinuousTransformerWrapper(nn.Module): + def __init__( + self, + *, + max_seq_len, + attn_layers, + dim_in = None, + dim_out = None, + emb_dim = None, + max_mem_len = 0, + post_emb_norm = False, + emb_dropout = 0., + use_abs_pos_emb = True, + scaled_sinu_pos_emb = False + ): + super().__init__() + assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder' + + dim = attn_layers.dim + + self.max_seq_len = max_seq_len + + self.max_mem_len = max_mem_len + + if not (use_abs_pos_emb and not attn_layers.has_pos_emb): + self.pos_emb = always(0) + elif scaled_sinu_pos_emb: + self.pos_emb = ScaledSinusoidalEmbedding(dim) + else: + self.pos_emb = AbsolutePositionalEmbedding(dim, max_seq_len) + + self.post_emb_norm = nn.LayerNorm(dim) if post_emb_norm else nn.Identity() + self.emb_dropout = nn.Dropout(emb_dropout) + + self.project_in = nn.Linear(dim_in, dim) if exists(dim_in) else nn.Identity() + + self.attn_layers = attn_layers + + self.project_out = nn.Linear(dim, dim_out) if exists(dim_out) else nn.Identity() + + def forward( + self, + x, + return_embeddings = False, + return_intermediates = False, + return_mems = False, + mask = None, + return_attn = False, + mems = None, + pos = None, + prepend_embeds = None, + **kwargs + ): + x = self.project_in(x) + x = x + self.pos_emb(x, pos = pos) + + x = self.post_emb_norm(x) + + # whether to append embeds, as in PaLI, for image embeddings + + if exists(prepend_embeds): + _, prepend_dim = prepend_embeds.shape[1:] + assert prepend_dim == x.shape[-1], 'prepended embeddings need to have same dimensions as model dimensions' + + x = torch.cat((prepend_embeds, x), dim = -2) + + x = self.emb_dropout(x) + + x, intermediates = self.attn_layers(x, mask = mask, mems = mems, return_hiddens = True, **kwargs) + + out = self.project_out(x) if not return_embeddings else x + + if return_intermediates: + return out, intermediates + + if return_mems: + hiddens = intermediates.hiddens + new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), hiddens)) + return out, new_mems + + if return_attn: + attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates)) + return out, attn_maps + + return out + +class XTransformer(nn.Module): + def __init__( + self, + *, + dim, + tie_token_emb = False, + ignore_index = -100, + pad_value = 0, + cross_attn_tokens_dropout = 0., + **kwargs + ): + super().__init__() + enc_kwargs, kwargs = groupby_prefix_and_trim('enc_', kwargs) + dec_kwargs, kwargs = groupby_prefix_and_trim('dec_', kwargs) + + assert 'dim' not in enc_kwargs and 'dim' not in dec_kwargs, 'dimension of either encoder or decoder must be set with `dim` keyword' + enc_transformer_kwargs = pick_and_pop(['num_tokens', 'max_seq_len'], enc_kwargs) + enc_transformer_kwargs['emb_dropout'] = enc_kwargs.pop('emb_dropout', 0) + enc_transformer_kwargs['num_memory_tokens'] = enc_kwargs.pop('num_memory_tokens', None) + enc_transformer_kwargs['scaled_sinu_pos_emb'] = enc_kwargs.pop('scaled_sinu_pos_emb', False) + enc_transformer_kwargs['use_abs_pos_emb'] = enc_kwargs.pop('use_abs_pos_emb', True) + + dec_transformer_kwargs = pick_and_pop(['num_tokens', 'max_seq_len'], dec_kwargs) + dec_transformer_kwargs['emb_dropout'] = dec_kwargs.pop('emb_dropout', 0) + dec_transformer_kwargs['scaled_sinu_pos_emb'] = dec_kwargs.pop('scaled_sinu_pos_emb', False) + dec_transformer_kwargs['use_abs_pos_emb'] = dec_kwargs.pop('use_abs_pos_emb', True) + + self.cross_attn_tokens_dropout = cross_attn_tokens_dropout # how many tokens from the encoder to dropout when cross attending from decoder - seen in a couple papers, including Perceiver AR - this will also be very effective regularization when cross attending to very long memories + + self.encoder = TransformerWrapper( + **enc_transformer_kwargs, + attn_layers = Encoder(dim = dim, **enc_kwargs) + ) + + self.decoder = TransformerWrapper( + **dec_transformer_kwargs, + attn_layers = Decoder(dim = dim, cross_attend = True, **dec_kwargs) + ) + + if tie_token_emb: + self.decoder.token_emb = self.encoder.token_emb + + self.decoder = AutoregressiveWrapper(self.decoder, ignore_index=ignore_index, pad_value=pad_value) + + @torch.no_grad() + def generate(self, seq_in, seq_out_start, seq_len, mask = None, attn_mask = None, **kwargs): + encodings = self.encoder(seq_in, mask = mask, attn_mask = attn_mask, return_embeddings = True) + return self.decoder.generate(seq_out_start, seq_len, context = encodings, context_mask = mask, **kwargs) + + def forward(self, src, tgt, mask = None, attn_mask = None, src_prepend_embeds = None): + + if exists(src_prepend_embeds) and exists(mask): + mask = pad_at_dim(mask, (src_prepend_embeds.shape[-2], 0), dim = -1, value = True) + + enc = self.encoder(src, mask = mask, attn_mask = attn_mask, prepend_embeds = src_prepend_embeds, return_embeddings = True) + + if self.training and self.cross_attn_tokens_dropout > 0: + enc, mask = dropout_seq(enc, mask, self.cross_attn_tokens_dropout) + + out = self.decoder(tgt, context = enc, context_mask = mask) return out \ No newline at end of file