|
import os.path |
|
|
|
import time as reqtime |
|
import datetime |
|
from pytz import timezone |
|
|
|
import torch |
|
|
|
import spaces |
|
import gradio as gr |
|
|
|
from x_transformer_1_23_2 import * |
|
import random |
|
import tqdm |
|
|
|
from midi_to_colab_audio import midi_to_colab_audio |
|
import TMIDIX |
|
|
|
import matplotlib.pyplot as plt |
|
|
|
in_space = os.getenv("SYSTEM") == "spaces" |
|
|
|
|
|
|
|
@spaces.GPU |
|
def InpaintPitches(input_midi, input_num_of_notes, input_patch_number): |
|
print('=' * 70) |
|
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
start_time = reqtime.time() |
|
|
|
print('Loading model...') |
|
|
|
SEQ_LEN = 8192 |
|
PAD_IDX = 19463 |
|
DEVICE = 'cuda' |
|
|
|
|
|
|
|
model = TransformerWrapper( |
|
num_tokens = PAD_IDX+1, |
|
max_seq_len = SEQ_LEN, |
|
attn_layers = Decoder(dim = 1024, depth = 32, heads = 32, attn_flash = True) |
|
) |
|
|
|
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX) |
|
|
|
model.to(DEVICE) |
|
print('=' * 70) |
|
|
|
print('Loading model checkpoint...') |
|
|
|
model.load_state_dict( |
|
torch.load('Giant_Music_Transformer_Large_Trained_Model_36074_steps_0.3067_loss_0.927_acc.pth', |
|
map_location=DEVICE)) |
|
print('=' * 70) |
|
|
|
model.eval() |
|
|
|
if DEVICE == 'cpu': |
|
dtype = torch.bfloat16 |
|
else: |
|
dtype = torch.bfloat16 |
|
|
|
ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype) |
|
|
|
print('Done!') |
|
print('=' * 70) |
|
|
|
fn = os.path.basename(input_midi.name) |
|
fn1 = fn.split('.')[0] |
|
|
|
input_num_of_notes = max(8, min(2048, input_num_of_notes)) |
|
|
|
print('-' * 70) |
|
print('Input file name:', fn) |
|
print('Req num of notes:', input_num_of_notes) |
|
print('Req patch number:', input_patch_number) |
|
print('-' * 70) |
|
|
|
|
|
raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name) |
|
|
|
|
|
|
|
|
|
events_matrix1 = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0] |
|
|
|
|
|
|
|
|
|
|
|
instruments_list_without_drums = list(set([y[3] for y in events_matrix1 if y[3] != 9])) |
|
instruments_list = list(set([y[3] for y in events_matrix1])) |
|
|
|
if len(events_matrix1) > 0 and len(instruments_list_without_drums) > 0: |
|
|
|
|
|
|
|
events_matrix2 = [] |
|
|
|
|
|
for e in events_matrix1: |
|
|
|
|
|
e[1] = int(e[1] / 16) |
|
e[2] = int(e[2] / 16) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
events_matrix1.sort(key=lambda x: x[6]) |
|
events_matrix1.sort(key=lambda x: x[4], reverse=True) |
|
events_matrix1.sort(key=lambda x: x[1]) |
|
|
|
|
|
|
|
|
|
melody_chords = [] |
|
melody_chords2 = [] |
|
|
|
|
|
|
|
if 9 in instruments_list: |
|
drums_present = 19331 |
|
else: |
|
drums_present = 19330 |
|
|
|
if events_matrix1[0][3] != 9: |
|
pat = events_matrix1[0][6] |
|
else: |
|
pat = 128 |
|
|
|
melody_chords.extend([19461, drums_present, 19332+pat]) |
|
|
|
|
|
|
|
|
|
|
|
abs_time = 0 |
|
|
|
pbar_time = 0 |
|
|
|
pe = events_matrix1[0] |
|
|
|
chords_counter = 1 |
|
|
|
comp_chords_len = len(list(set([y[1] for y in events_matrix1]))) |
|
|
|
for e in events_matrix1: |
|
|
|
|
|
|
|
|
|
|
|
delta_time = max(0, min(255, e[1]-pe[1])) |
|
|
|
|
|
|
|
dur = max(0, min(255, e[2])) |
|
cha = max(0, min(15, e[3])) |
|
|
|
|
|
if cha == 9: |
|
pat = 128 |
|
|
|
else: |
|
pat = e[6] |
|
|
|
|
|
|
|
ptc = max(1, min(127, e[4])) |
|
|
|
|
|
|
|
|
|
vel = max(8, min(127, e[5])) |
|
velocity = round(vel / 15)-1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
dur_vel = (8 * dur) + velocity |
|
pat_ptc = (129 * pat) + ptc |
|
|
|
melody_chords.extend([delta_time, dur_vel+256, pat_ptc+2304]) |
|
melody_chords2.append([delta_time, dur_vel+256, pat_ptc+2304]) |
|
|
|
pe = e |
|
|
|
|
|
|
|
|
|
print('=' * 70) |
|
print('Number of tokens:', len(melody_chords)) |
|
print('Number of notes:', len(melody_chords2)) |
|
print('Sample output events', melody_chords[:5]) |
|
print('=' * 70) |
|
print('Generating...') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inpaint_MIDI_patch = input_patch_number |
|
|
|
|
|
number_of_prime_notes = 36 |
|
number_of_memory_tokens = 1024 |
|
number_of_samples_per_inpainted_note = 1 |
|
temperature = 0.85 |
|
|
|
print('=' * 70) |
|
print('Giant Music Transformer Inpainting Model Generator') |
|
print('=' * 70) |
|
|
|
|
|
|
|
nidx = 0 |
|
first_inote = True |
|
fidx = 0 |
|
|
|
number_of_prime_tokens = number_of_prime_notes * 3 |
|
|
|
for i, m in enumerate(melody_chords): |
|
|
|
if 2304 <= melody_chords[i] < 18945: |
|
|
|
cpatch = (melody_chords[i]-2304) // 129 |
|
|
|
if cpatch == inpaint_MIDI_patch: |
|
nidx += 1 |
|
if first_inote: |
|
fidx += 1 |
|
|
|
if first_inote and fidx == number_of_prime_notes: |
|
number_of_prime_tokens = i |
|
first_inote = False |
|
|
|
if nidx == input_num_of_notes: |
|
break |
|
|
|
nidx = i |
|
|
|
|
|
|
|
out2 = [] |
|
|
|
for m in melody_chords[:number_of_prime_tokens]: |
|
out2.append(m) |
|
|
|
for i in range(number_of_prime_tokens, len(melody_chords[:nidx])): |
|
|
|
cpatch = (melody_chords[i]-2304) // 129 |
|
|
|
if 2304 <= melody_chords[i] < 18945 and (cpatch) == inpaint_MIDI_patch: |
|
|
|
samples = [] |
|
|
|
for j in range(number_of_samples_per_inpainted_note): |
|
|
|
inp = torch.LongTensor(out2[-number_of_memory_tokens:]).cuda() |
|
|
|
with ctx: |
|
out1 = model.generate(inp, |
|
1, |
|
temperature=temperature, |
|
return_prime=True, |
|
verbose=False) |
|
|
|
with torch.no_grad(): |
|
test_loss, test_acc = model(out1) |
|
|
|
samples.append([out1.tolist()[0][-1], test_acc.tolist()]) |
|
|
|
accs = [y[1] for y in samples] |
|
max_acc = max(accs) |
|
max_acc_sample = samples[accs.index(max_acc)][0] |
|
|
|
cpitch = (max_acc_sample-2304) % 129 |
|
|
|
out2.extend([((cpatch * 129) + cpitch)+2304]) |
|
|
|
else: |
|
out2.append(melody_chords[i]) |
|
|
|
print('=' * 70) |
|
print('Done!') |
|
print('=' * 70) |
|
|
|
|
|
print('Rendering results...') |
|
|
|
print('=' * 70) |
|
print('Sample INTs', out2[:12]) |
|
print('=' * 70) |
|
|
|
if len(out2) != 0: |
|
|
|
song = out2 |
|
song_f = [] |
|
|
|
time = 0 |
|
dur = 0 |
|
vel = 90 |
|
pitch = 0 |
|
channel = 0 |
|
|
|
patches = [-1] * 16 |
|
|
|
channels = [0] * 16 |
|
channels[9] = 1 |
|
|
|
for ss in song: |
|
|
|
if 0 <= ss < 256: |
|
|
|
time += ss * 16 |
|
|
|
if 256 <= ss < 2304: |
|
|
|
dur = ((ss-256) // 8) * 16 |
|
vel = (((ss-256) % 8)+1) * 15 |
|
|
|
if 2304 <= ss < 18945: |
|
|
|
patch = (ss-2304) // 129 |
|
|
|
if patch < 128: |
|
|
|
if patch not in patches: |
|
if 0 in channels: |
|
cha = channels.index(0) |
|
channels[cha] = 1 |
|
else: |
|
cha = 15 |
|
|
|
patches[cha] = patch |
|
channel = patches.index(patch) |
|
else: |
|
channel = patches.index(patch) |
|
|
|
if patch == 128: |
|
channel = 9 |
|
|
|
pitch = (ss-2304) % 129 |
|
|
|
song_f.append(['note', time, dur, channel, pitch, vel, patch ]) |
|
|
|
patches = [0 if x==-1 else x for x in patches] |
|
|
|
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f, |
|
output_signature = 'Giant Music Transformer', |
|
output_file_name = fn1, |
|
track_name='Project Los Angeles', |
|
list_of_MIDI_patches=patches |
|
) |
|
|
|
new_fn = fn1+'.mid' |
|
|
|
|
|
audio = midi_to_colab_audio(new_fn, |
|
soundfont_path=soundfont, |
|
sample_rate=16000, |
|
volume_scale=10, |
|
output_for_gradio=True |
|
) |
|
|
|
print('Done!') |
|
print('=' * 70) |
|
|
|
|
|
|
|
output_midi_title = str(fn1) |
|
output_midi_summary = str(song_f[:3]) |
|
output_midi = str(new_fn) |
|
output_audio = (16000, audio) |
|
|
|
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True) |
|
|
|
print('Output MIDI file name:', output_midi) |
|
print('Output MIDI title:', output_midi_title) |
|
print('Output MIDI summary:', output_midi_summary) |
|
print('=' * 70) |
|
|
|
|
|
|
|
|
|
print('-' * 70) |
|
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
print('-' * 70) |
|
print('Req execution time:', (reqtime.time() - start_time), 'sec') |
|
|
|
return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
PDT = timezone('US/Pacific') |
|
|
|
print('=' * 70) |
|
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
print('=' * 70) |
|
|
|
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2" |
|
|
|
app = gr.Blocks() |
|
with app: |
|
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Inpaint Music Transformer</h1>") |
|
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Inpaint pitches in any MIDI</h1>") |
|
gr.Markdown( |
|
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Inpaint-Music-Transformer&style=flat)\n\n" |
|
"This is a demo of the Giant Music Transformer pitches inpainting feature\n\n" |
|
"Check out [Giant Music Transformer](https://github.com/asigalov61/Giant-Music-Transformer) on GitHub!\n\n" |
|
"[Open In Colab]" |
|
"(https://colab.research.google.com/github/asigalov61/Giant-Music-Transformer/blob/main/Giant_Music_Transformer.ipynb)" |
|
" for all features, faster execution and endless generation" |
|
) |
|
gr.Markdown("## Upload your MIDI or select a sample example MIDI") |
|
|
|
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"]) |
|
input_num_of_notes = gr.Slider(8, 2048, value=128, step=8, label="Number of composition notes to inpaint") |
|
input_patch_number = gr.Slider(0, 127, value=0, step=1, label="Composition MIDI patch to inpaint") |
|
|
|
run_btn = gr.Button("generate", variant="primary") |
|
|
|
gr.Markdown("## Generation results") |
|
|
|
output_midi_title = gr.Textbox(label="Output MIDI title") |
|
output_midi_summary = gr.Textbox(label="Output MIDI summary") |
|
output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio") |
|
output_plot = gr.Plot(label="Output MIDI score plot") |
|
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"]) |
|
|
|
|
|
run_event = run_btn.click(InpaintPitches, [input_midi, input_num_of_notes, input_patch_number], |
|
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot]) |
|
|
|
gr.Examples( |
|
[["Giant-Music-Transformer-Piano-Seed-1.mid", 128, 0], |
|
["Giant-Music-Transformer-Piano-Seed-2.mid", 128, 0], |
|
["Giant-Music-Transformer-Piano-Seed-3.mid", 128, 0], |
|
["Giant-Music-Transformer-Piano-Seed-4.mid", 128, 0], |
|
["Giant-Music-Transformer-Piano-Seed-5.mid", 128, 2], |
|
["Giant-Music-Transformer-Piano-Seed-6.mid", 128, 0], |
|
["Giant-Music-Transformer-MI-Seed-1.mid", 128, 71], |
|
["Giant-Music-Transformer-MI-Seed-2.mid", 128, 40], |
|
["Giant-Music-Transformer-MI-Seed-3.mid", 128, 40], |
|
["Giant-Music-Transformer-MI-Seed-4.mid", 128, 40], |
|
["Giant-Music-Transformer-MI-Seed-5.mid", 128, 40], |
|
["Giant-Music-Transformer-MI-Seed-6.mid", 128, 0] |
|
], |
|
[input_midi, input_num_of_notes, input_patch_number], |
|
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot], |
|
InpaintPitches, |
|
cache_examples=True, |
|
) |
|
|
|
app.queue().launch() |