Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,390 Bytes
35a52d1 1d337e0 35a52d1 1d337e0 35a52d1 1390245 2dbabd8 35a52d1 2dbabd8 35a52d1 2dbabd8 35a52d1 2dbabd8 35a52d1 2dbabd8 35a52d1 2dbabd8 35a52d1 2dbabd8 35a52d1 2dbabd8 35a52d1 eed841c 35a52d1 eed841c 35a52d1 eed841c 35a52d1 eed841c 35a52d1 1390245 35a52d1 eed841c 35a52d1 2dbabd8 35a52d1 46f80fc 35a52d1 eed841c 35a52d1 eed841c 35a52d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import os.path
import time as reqtime
import datetime
from pytz import timezone
import torch
import spaces
import gradio as gr
import random
import tqdm
from midi_to_colab_audio import midi_to_colab_audio
import TMIDIX
import matplotlib.pyplot as plt
from inference import PianoTranscription
from config import sample_rate
from utilities import load_audio
in_space = os.getenv("SYSTEM") == "spaces"
# =================================================================================================
@spaces.GPU
def TranscribePianoAudio(input_audio):
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('=' * 70)
f = input_audio.name
fn = os.path.basename(f)
fn1 = fn.split('.')[0]
print('-' * 70)
print('Input file name:', fn)
print('-' * 70)
print('Loading audio...')
# Load audio
(audio, _) = load_audio(f, sr=sample_rate, mono=True)
print('Done!')
print('-' * 70)
print('Loading transcriptor..')
# Transcriptor
transcriptor = PianoTranscription(device='cuda') # 'cuda' | 'cpu'
print('Done!')
print('-' * 70)
print('Transcribing...')
transcribed_dict = transcriptor.transcribe(audio, fn+'.mid')
print('Done!')
print('-' * 70)
#===============================================================================
raw_score = TMIDIX.midi2single_track_ms_score(fn+'.mid')
#===============================================================================
# Enhanced score notes
escore = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
#==================================================================
print('=' * 70)
print('Number of transcribed notes:', len(escore))
print('Sample trascribed MIDI events', escore[:5])
print('=' * 70)
print('Done!')
print('=' * 70)
#===============================================================================
print('Rendering results...')
patches = [0] * 16
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(escore,
output_signature = 'ByteDance Solo Piano Audio to MIDI Transcription',
output_file_name = fn1,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches
)
print('=' * 70)
new_fn = fn1+'.mid'
audio = midi_to_colab_audio(new_fn,
soundfont_path=soundfont,
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
print('Done!')
print('=' * 70)
#========================================================
output_midi_title = str(fn1)
output_midi_summary = str(song_f[:3])
output_midi = str(new_fn)
output_audio = (16000, audio)
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True)
print('Output MIDI file name:', output_midi)
print('Output MIDI title:', output_midi_title)
print('Output MIDI summary:', output_midi_summary)
print('=' * 70)
#========================================================
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot
# =================================================================================================
if __name__ == "__main__":
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>ByteDance Solo Piano Audio to MIDI Transcription</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Transcribe any Solo Piano WAV or MP3 audio to MIDI</h1>")
gr.Markdown(
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.ByteDance-Solo-Piano-Adio-to-MIDI-Transcription&style=flat)\n\n"
"This is a ByteDance Solo Piano Audio to MIDI Transcription Model\n\n"
"Check out [ByteDance Solo Piano Audio to MIDI Transcription](https://github.com/asigalov61/piano_transcription_inference) on GitHub!\n\n"
"[Open In Colab]"
"(https://colab.research.google.com/github/asigalov61/tegridy-tools/blob/main/tegridy-tools/notebooks/ByteDance_Piano_Transcription.ipynb)"
" for faster execution and endless transcription"
)
gr.Markdown("## Upload your Solo Piano WAV or MP3 audio or select a sample example audio file")
input_audio = gr.File(label="Input Solo Piano WAV or MP3 Audio File", file_types=[".wav", ".mp3"])
run_btn = gr.Button("transcribe", variant="primary")
gr.Markdown("## Generation results")
output_midi_title = gr.Textbox(label="Output MIDI title")
output_midi_summary = gr.Textbox(label="Output MIDI summary")
output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio")
output_plot = gr.Plot(label="Output MIDI score plot")
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])
run_event = run_btn.click(TranscribePianoAudio, [input_audio],
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot])
gr.Examples(
["cut_liszt.mp3"
],
[input_audio],
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot],
TranscribePianoAudio,
cache_examples=True,
)
app.queue().launch() |