from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("ashercn97/awesome-prompts-merged") model = AutoModelForCausalLM.from_pretrained("ashercn97/awesome-prompts-merged") pipeline = pipeline("text2text-generation", model=model, tokenizer=tokenizer) def generate(prompt): form = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n ### Instruction:\n {}\n ### Response: """.format(prompt) prompts = [form] results = pipeline(prompts, max_length=150) output = results[0] return results[0] input_component = gr.Textbox(label = "Input a persona, e.g. photographer", value = "photographer") output_component = gr.Textbox(label = "Prompt") examples = [["photographer"], ["developer"]] description = "This app generates ChatGPT prompts, it's based on a BART model trained on [this dataset](https://huggingface.co/datasets/fka/awesome-chatgpt-prompts). 📓 Simply enter a persona that you want the prompt to be generated based on. 🧙🏻🧑🏻‍🚀🧑🏻‍🎨🧑🏻‍🔬🧑🏻‍💻🧑🏼‍🏫🧑🏽‍🌾" gr.Interface(generate, inputs = input_component, outputs=output_component, examples=examples, title = "👨🏻‍🎤 ChatGPT Prompt Generator 👨🏻‍🎤", description=description).launch()