Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,438 Bytes
90fd8f8 a2fa331 90fd8f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import kiui
from kiui.lpips import LPIPS
from core.unet import UNet
from core.options import Options
from core.gs import GaussianRenderer
class LGM(nn.Module):
def __init__(
self,
opt: Options,
):
super().__init__()
self.opt = opt
# unet
self.unet = UNet(
9, 14,
down_channels=self.opt.down_channels,
down_attention=self.opt.down_attention,
mid_attention=self.opt.mid_attention,
up_channels=self.opt.up_channels,
up_attention=self.opt.up_attention,
)
# last conv
self.conv = nn.Conv2d(14, 14, kernel_size=1) # NOTE: maybe remove it if train again
# Gaussian Renderer
self.gs = GaussianRenderer(opt)
# activations...
self.pos_act = lambda x: x.clamp(-1, 1)
self.scale_act = lambda x: 0.1 * F.softplus(x)
self.opacity_act = lambda x: torch.sigmoid(x)
self.rot_act = lambda x: F.normalize(x, dim=-1)
self.rgb_act = lambda x: 0.5 * torch.tanh(x) + 0.5 # NOTE: may use sigmoid if train again
# LPIPS loss
if self.opt.lambda_lpips > 0:
self.lpips_loss = LPIPS(net='vgg')
self.lpips_loss.requires_grad_(False)
def state_dict(self, **kwargs):
# remove lpips_loss
state_dict = super().state_dict(**kwargs)
for k in list(state_dict.keys()):
if 'lpips_loss' in k:
del state_dict[k]
return state_dict
def prepare_default_rays(self, device, elevation=0):
from kiui.cam import orbit_camera
from core.utils import get_rays
cam_poses = np.stack([
orbit_camera(elevation, 0, radius=self.opt.cam_radius),
orbit_camera(elevation, 90, radius=self.opt.cam_radius),
orbit_camera(elevation, 180, radius=self.opt.cam_radius),
orbit_camera(elevation, 270, radius=self.opt.cam_radius),
], axis=0) # [4, 4, 4]
cam_poses = torch.from_numpy(cam_poses)
rays_embeddings = []
for i in range(cam_poses.shape[0]):
rays_o, rays_d = get_rays(cam_poses[i], self.opt.input_size, self.opt.input_size, self.opt.fovy) # [h, w, 3]
rays_plucker = torch.cat([torch.cross(rays_o, rays_d, dim=-1), rays_d], dim=-1) # [h, w, 6]
rays_embeddings.append(rays_plucker)
## visualize rays for plotting figure
# kiui.vis.plot_image(rays_d * 0.5 + 0.5, save=True)
rays_embeddings = torch.stack(rays_embeddings, dim=0).permute(0, 3, 1, 2).contiguous().to(device) # [V, 6, h, w]
return rays_embeddings
def forward_gaussians(self, images):
# images: [B, 4, 9, H, W]
# return: Gaussians: [B, dim_t]
B, V, C, H, W = images.shape
images = images.view(B*V, C, H, W)
x = self.unet(images) # [B*4, 14, h, w]
x = self.conv(x) # [B*4, 14, h, w]
x = x.reshape(B, 4, 14, self.opt.splat_size, self.opt.splat_size)
## visualize multi-view gaussian features for plotting figure
# tmp_alpha = self.opacity_act(x[0, :, 3:4])
# tmp_img_rgb = self.rgb_act(x[0, :, 11:]) * tmp_alpha + (1 - tmp_alpha)
# tmp_img_pos = self.pos_act(x[0, :, 0:3]) * 0.5 + 0.5
# kiui.vis.plot_image(tmp_img_rgb, save=True)
# kiui.vis.plot_image(tmp_img_pos, save=True)
x = x.permute(0, 1, 3, 4, 2).reshape(B, -1, 14)
pos = self.pos_act(x[..., 0:3]) # [B, N, 3]
opacity = self.opacity_act(x[..., 3:4])
scale = self.scale_act(x[..., 4:7])
rotation = self.rot_act(x[..., 7:11])
rgbs = self.rgb_act(x[..., 11:])
gaussians = torch.cat([pos, opacity, scale, rotation, rgbs], dim=-1) # [B, N, 14]
return gaussians
def forward(self, data, step_ratio=1):
# data: output of the dataloader
# return: loss
results = {}
loss = 0
images = data['input'] # [B, 4, 9, h, W], input features
# use the first view to predict gaussians
gaussians = self.forward_gaussians(images) # [B, N, 14]
results['gaussians'] = gaussians
# random bg for training
if self.training:
bg_color = torch.rand(3, dtype=torch.float32, device=gaussians.device)
else:
bg_color = torch.ones(3, dtype=torch.float32, device=gaussians.device)
# use the other views for rendering and supervision
results = self.gs.render(gaussians, data['cam_view'], data['cam_view_proj'], data['cam_pos'], bg_color=bg_color)
pred_images = results['image'] # [B, V, C, output_size, output_size]
pred_alphas = results['alpha'] # [B, V, 1, output_size, output_size]
results['images_pred'] = pred_images
results['alphas_pred'] = pred_alphas
gt_images = data['images_output'] # [B, V, 3, output_size, output_size], ground-truth novel views
gt_masks = data['masks_output'] # [B, V, 1, output_size, output_size], ground-truth masks
gt_images = gt_images * gt_masks + bg_color.view(1, 1, 3, 1, 1) * (1 - gt_masks)
loss_mse = F.mse_loss(pred_images, gt_images) + F.mse_loss(pred_alphas, gt_masks)
loss = loss + loss_mse
if self.opt.lambda_lpips > 0:
loss_lpips = self.lpips_loss(
# gt_images.view(-1, 3, self.opt.output_size, self.opt.output_size) * 2 - 1,
# pred_images.view(-1, 3, self.opt.output_size, self.opt.output_size) * 2 - 1,
# downsampled to at most 256 to reduce memory cost
F.interpolate(gt_images.view(-1, 3, self.opt.output_size, self.opt.output_size) * 2 - 1, (256, 256), mode='bilinear', align_corners=False),
F.interpolate(pred_images.view(-1, 3, self.opt.output_size, self.opt.output_size) * 2 - 1, (256, 256), mode='bilinear', align_corners=False),
).mean()
results['loss_lpips'] = loss_lpips
loss = loss + self.opt.lambda_lpips * loss_lpips
results['loss'] = loss
# metric
with torch.no_grad():
psnr = -10 * torch.log10(torch.mean((pred_images.detach() - gt_images) ** 2))
results['psnr'] = psnr
return results |