# demo5 # tttt import os import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer from transformers import is_torch_npu_available from threading import Thread tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-7B-Chat") model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen1.5-7B-Chat", torch_dtype=torch.bfloat16) if is_torch_npu_available(): model.to("npu:0") elif torch.cuda.is_available(): mode.to("cuda:0") class StopOnTokens(StoppingCriteria): def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: stop_ids = [2] for stop_id in stop_ids: if input_ids[0][-1] == stop_id: return True return False def predict(message, history): #if is_torch_npu_available(): # torch.npu.set_device(model.device) stop = StopOnTokens() conversation = [] for user, assistant in history: conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) conversation.append({"role": "user", "content": message}) print(f'>>>conversation={conversation}', flush=True) prompt = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True) model_inputs = tokenizer(prompt, return_tensors="pt").to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=100., skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( model_inputs, streamer=streamer, max_new_tokens=1024, do_sample=True, top_p=0.95, top_k=50, temperature=0.7, repetition_penalty=1.0, num_beams=1, stopping_criteria=StoppingCriteriaList([stop]) ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() partial_message = "" for new_token in streamer: partial_message += new_token if '' in partial_message: break yield partial_message # Setting up the Gradio chat interface. gr.ChatInterface(predict, title="Qwen1.5 0.5B Chat Demo", description="Warning. All answers are generated and may contain inaccurate information.", examples=['How do you cook fish?', 'Who is the president of the United States?'] ).launch()