import gradio as gr from diffusers.utils import load_image import spaces from panna import ControlNetSD3 model = ControlNetSD3(condition_type="pose") title = ("# [ControlNet SD3](https://huggingface.co/docs/diffusers/en/api/pipelines/controlnet_sd3) (Pose Conditioning)\n" "The demo is part of [panna](https://github.com/asahi417/panna) project.") example_files = [] for n in range(1, 10): load_image(f"https://huggingface.co/spaces/depth-anything/Depth-Anything-V2/resolve/main/assets/examples/demo{n:0>2}.jpg").save(f"demo{n:0>2}.jpg") example_files.append(f"demo{n:0>2}.jpg") @spaces.GPU() def infer(init_image, prompt, negative_prompt, seed, guidance_scale, controlnet_conditioning_scale, num_inference_steps): return model.text2image( image=[init_image], prompt=[prompt], negative_prompt=[negative_prompt], guidance_scale=guidance_scale, controlnet_conditioning_scale=controlnet_conditioning_scale, num_inference_steps=num_inference_steps, seed=seed )[0] with gr.Blocks() as demo: gr.Markdown(title) with gr.Row(): prompt = gr.Text(label="Prompt", show_label=True, max_lines=1, placeholder="Enter your prompt", container=False) run_button = gr.Button("Run", scale=0) with gr.Row(): init_image = gr.Image(label="Input Image", type='pil') result = gr.Image(label="Result") with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text(label="Negative Prompt", max_lines=1, placeholder="Enter a negative prompt") seed = gr.Slider(label="Seed", minimum=0, maximum=1_000_000, step=1, value=0) with gr.Row(): guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=7) controlnet_conditioning_scale = gr.Slider(label="Controlnet conditioning scale", minimum=0.0, maximum=1.0, step=0.05, value=0.5) num_inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=50, step=1, value=28) examples = gr.Examples(examples=example_files, inputs=[init_image]) gr.on( triggers=[run_button.click, prompt.submit, negative_prompt.submit], fn=infer, inputs=[init_image, prompt, negative_prompt, seed, guidance_scale, controlnet_conditioning_scale, num_inference_steps], outputs=[result] ) demo.launch(server_name="0.0.0.0")