proteinviz / proteins_viz.py
as-cle-bert's picture
Create proteins_viz.py
9a1bde7 verified
raw
history blame
5.11 kB
import pandas as pd
from biopandas.pdb import PandasPdb
from prody import parsePDBHeader
def read_pdb_to_dataframe(
pdb_path,
model_index: int = 1,
parse_header: bool = True,
) -> pd.DataFrame:
"""
Read a PDB file, and return a Pandas DataFrame containing the atomic coordinates and metadata.
Args:
pdb_path (str, optional): Path to a local PDB file to read. Defaults to None.
model_index (int, optional): Index of the model to extract from the PDB file, in case
it contains multiple models. Defaults to 1.
parse_header (bool, optional): Whether to parse the PDB header and extract metadata.
Defaults to True.
Returns:
pd.DataFrame: A DataFrame containing the atomic coordinates and metadata, with one row
per atom
"""
atomic_df = PandasPdb().read_pdb(pdb_path)
if parse_header:
header = parsePDBHeader(pdb_path)
else:
header = None
atomic_df = atomic_df.get_model(model_index)
if len(atomic_df.df["ATOM"]) == 0:
raise ValueError(f"No model found for index: {model_index}")
return pd.concat([atomic_df.df["ATOM"], atomic_df.df["HETATM"]]), header
from graphein.protein.graphs import label_node_id
def process_dataframe(df: pd.DataFrame, granularity='CA') -> pd.DataFrame:
"""
Process a DataFrame of protein structure data to reduce ambiguity and simplify analysis.
This function performs the following steps:
1. Handles alternate locations for an atom, defaulting to keep the first one if multiple exist.
2. Assigns a unique node_id to each residue in the DataFrame, using a helper function label_node_id.
3. Filters the DataFrame based on specified granularity (defaults to 'CA' for alpha carbon).
Parameters
----------
df : pd.DataFrame
The DataFrame containing protein structure data to process. It is expected to contain columns 'alt_loc' and 'atom_name'.
granularity : str, optional
The level of detail or perspective at which the DataFrame should be analyzed. Defaults to 'CA' (alpha carbon).
"""
# handle the case of alternative locations,
# if so default to the 1st one = A
if 'alt_loc' in df.columns:
df['alt_loc'] = df['alt_loc'].replace('', 'A')
df = df.loc[(df['alt_loc']=='A')]
df = label_node_id(df, granularity)
df = df.loc[(df['atom_name']==granularity)]
return df
from graphein.protein.graphs import initialise_graph_with_metadata
from graphein.protein.graphs import add_nodes_to_graph
from graphein.protein.visualisation import plotly_protein_structure_graph
from PIL import Image
import networkx as nx
def take_care(pdb_path):
df, header = read_pdb_to_dataframe(pdb_path)
process_df = process_dataframe(df)
g = initialise_graph_with_metadata(protein_df=process_df, # from above cell
raw_pdb_df=df, # Store this for traceability
pdb_code = '3nir', #and again
granularity = 'CA' # Store this so we know what kind of graph we have
)
g = add_nodes_to_graph(g)
def add_backbone_edges(G: nx.Graph) -> nx.Graph:
# Iterate over every chain
for chain_id in G.graph["chain_ids"]:
# Find chain residues
chain_residues = [
(n, v) for n, v in G.nodes(data=True) if v["chain_id"] == chain_id
]
# Iterate over every residue in chain
for i, residue in enumerate(chain_residues):
try:
# Checks not at chain terminus
if i == len(chain_residues) - 1:
continue
# Asserts residues are on the same chain
cond_1 = ( residue[1]["chain_id"] == chain_residues[i + 1][1]["chain_id"])
# Asserts residue numbers are adjacent
cond_2 = (abs(residue[1]["residue_number"] - chain_residues[i + 1][1]["residue_number"])== 1)
# If this checks out, we add a peptide bond
if (cond_1) and (cond_2):
# Adds "peptide bond" between current residue and the next
if G.has_edge(i, i + 1):
G.edges[i, i + 1]["kind"].add('backbone_bond')
else:
G.add_edge(residue[0],chain_residues[i + 1][0],kind={'backbone_bond'},)
except IndexError as e:
print(e)
return G
g = add_backbone_edges(g)
p = plotly_protein_structure_graph(
g,
colour_edges_by="kind",
colour_nodes_by="seq_position",
label_node_ids=False,
plot_title="Backbone Protein Graph",
node_size_multiplier=1,
)
image_file = "protein_graph.png"
p.write_image(image_file, format='png')
# Load the PNG image into a PIL image
image = Image.open(image_file)
return image