Spaces:
Runtime error
Runtime error
from transformers import AutoTokenizer, EsmForProteinFolding | |
from transformers.models.esm.openfold_utils.protein import to_pdb, Protein as OFProtein | |
from transformers.models.esm.openfold_utils.feats import atom14_to_atom37 | |
from Bio import SeqIO | |
import gradio as gr | |
import spaces | |
from gradio_molecule3d import Molecule3D | |
reps = [ | |
{ | |
"model": 0, | |
"chain": "", | |
"resname": "", | |
"style": "stick", | |
"color": "whiteCarbon", | |
"residue_range": "", | |
"around": 0, | |
"byres": False, | |
"visible": False | |
} | |
] | |
def read_mol(molpath): | |
with open(molpath, "r") as fp: | |
lines = fp.readlines() | |
mol = "" | |
for l in lines: | |
mol += l | |
return mol | |
def molecule(input_pdb): | |
mol = read_mol(input_pdb) | |
x = ( | |
"""<!DOCTYPE html> | |
<html> | |
<head> | |
<meta http-equiv="content-type" content="text/html; charset=UTF-8" /> | |
<style> | |
body{ | |
font-family:sans-serif | |
} | |
.mol-container { | |
width: 100%; | |
height: 600px; | |
position: relative; | |
} | |
.mol-container select{ | |
background-image:None; | |
} | |
</style> | |
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.3/jquery.min.js" integrity="sha512-STof4xm1wgkfm7heWqFJVn58Hm3EtS31XFaagaa8VMReCXAkQnJZ+jEy8PCC/iT18dFy95WcExNHFTqLyp72eQ==" crossorigin="anonymous" referrerpolicy="no-referrer"></script> | |
<script src="https://3Dmol.csb.pitt.edu/build/3Dmol-min.js"></script> | |
</head> | |
<body> | |
<div id="container" class="mol-container"></div> | |
<script> | |
let pdb = `""" | |
+ mol | |
+ """` | |
$(document).ready(function () { | |
let element = $("#container"); | |
let config = { backgroundColor: "white" }; | |
let viewer = $3Dmol.createViewer(element, config); | |
viewer.addModel(pdb, "pdb"); | |
viewer.getModel(0).setStyle({}, { cartoon: { colorscheme:"whiteCarbon" } }); | |
viewer.zoomTo(); | |
viewer.render(); | |
viewer.zoom(0.8, 2000); | |
}) | |
</script> | |
</body></html>""" | |
) | |
return f"""<iframe style="width: 100%; height: 600px" name="result" allow="midi; geolocation; microphone; camera; | |
display-capture; encrypted-media;" sandbox="allow-modals allow-forms | |
allow-scripts allow-same-origin allow-popups | |
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" | |
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>""" | |
def convert_outputs_to_pdb(outputs): | |
final_atom_positions = atom14_to_atom37(outputs["positions"][-1], outputs) | |
outputs = {k: v.to("cpu").numpy() for k, v in outputs.items()} | |
final_atom_positions = final_atom_positions.cpu().numpy() | |
final_atom_mask = outputs["atom37_atom_exists"] | |
pdbs = [] | |
for i in range(outputs["aatype"].shape[0]): | |
aa = outputs["aatype"][i] | |
pred_pos = final_atom_positions[i] | |
mask = final_atom_mask[i] | |
resid = outputs["residue_index"][i] + 1 | |
pred = OFProtein( | |
aatype=aa, | |
atom_positions=pred_pos, | |
atom_mask=mask, | |
residue_index=resid, | |
b_factors=outputs["plddt"][i], | |
chain_index=outputs["chain_index"][i] if "chain_index" in outputs else None, | |
) | |
pdbs.append(to_pdb(pred)) | |
return pdbs | |
tokenizer = AutoTokenizer.from_pretrained("facebook/esmfold_v1") | |
model = EsmForProteinFolding.from_pretrained("facebook/esmfold_v1", low_cpu_mem_usage=True) | |
model = model.cuda() | |
model.esm = model.esm.half() | |
import torch | |
torch.backends.cuda.matmul.allow_tf32 = True | |
model.trunk.set_chunk_size(64) | |
def fold_protein(test_protein): | |
tokenized_input = tokenizer([test_protein], return_tensors="pt", add_special_tokens=False)['input_ids'] | |
tokenized_input = tokenized_input.cuda() | |
with torch.no_grad(): | |
output = model(tokenized_input) | |
pdb = convert_outputs_to_pdb(output) | |
with open("output_structure.pdb", "w") as f: | |
f.write("".join(pdb)) | |
html = molecule("output_structure.pdb") | |
return html, "output_structure.pdb" | |
def fold_protein_wpdb(test_protein, pdb_path): | |
tokenized_input = tokenizer([test_protein], return_tensors="pt", add_special_tokens=False)['input_ids'] | |
tokenized_input = tokenized_input.cuda() | |
with torch.no_grad(): | |
output = model(tokenized_input) | |
pdb = convert_outputs_to_pdb(output) | |
with open(pdb_path, "w") as f: | |
f.write("".join(pdb)) | |
html = molecule(pdb_path) | |
return html, pdb_path | |
def load_protein_sequences(fasta_file): | |
protein_sequences = {} | |
for record in SeqIO.parse(fasta_file, "fasta"): | |
protein_sequences[record.id] = str(record.seq) | |
return protein_sequences | |
iface = gr.Interface( | |
title="Proteinviz", | |
fn=fold_protein, | |
inputs=gr.Textbox( | |
label="Protein Sequence", | |
info="Find sequences examples below, and complete examples with images at: https://github.com/AstraBert/proteinviz/tree/main/examples.md; if you input a sequence, you're gonna get the static image and the 3D model to explore and play with", | |
lines=5, | |
value=f"Paste or write amino-acidic sequence here", | |
), | |
outputs=[gr.HTML(label="Protein 3D model"), Molecule3D(label="Molecular 3D model", reps=reps)], | |
examples=[ | |
"MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH", | |
"MTEYKLVVVGAGGVGKSALTIQLIQNHFVDEYDPTIEDSYRKQVVIDGETCLLDILDTAGQEEYSAMRDQYMRTGEGFLCVFAINNTKSFEDIHQYREQIKRVKDSDDVPMVLVGNKCDLAARTVESRQAQDLARSYGIPYIETSAKTRQGVEDAFYTLVREIRQHKLRKLNPPDESGPGCMSCKCVLS", | |
"MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRGG", | |
] | |
) | |
with gr.Blocks() as demo1: | |
input_seqs = gr.File(label="FASTA File With Protein Sequences") | |
def show_split(inputfile): | |
if type(inputfile) == type(None): | |
gr.Markdown("## No Input Provided") | |
else: | |
seqs = load_protein_sequences(inputfile) | |
for header in seqs: | |
pdb_path = f'{seq.replace(" ", "_").replace(",","")}.pdb' | |
html, pdb = fold_protein_wpdb(seqs[seq], pdb_path) | |
gr.HTML(html, label=f"{seq} structural representation") | |
Molecule3D(pdb, label=f"{seq} molecular representation") | |
demo = gr.TabbedInterface([iface, demo1], ["Single Protein Structure Prediction", "Bulk Protein Structure Prediction"]) | |
demo.launch(server_name="0.0.0.0", share=False) |