Spaces:
Running
on
Zero
Running
on
Zero
artificialguybr
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,90 +1,78 @@
|
|
|
|
|
|
|
|
|
|
1 |
import tempfile
|
|
|
2 |
import gradio as gr
|
3 |
-
import
|
4 |
-
import os, stat
|
5 |
-
import uuid
|
6 |
from googletrans import Translator
|
7 |
from TTS.api import TTS
|
8 |
-
import ffmpeg
|
9 |
from faster_whisper import WhisperModel
|
10 |
-
from scipy.signal import wiener
|
11 |
import soundfile as sf
|
12 |
-
from pydub import AudioSegment
|
13 |
import numpy as np
|
14 |
-
import librosa
|
15 |
-
from zipfile import ZipFile
|
16 |
-
import shlex
|
17 |
import cv2
|
18 |
-
import torch
|
19 |
-
import torchvision
|
20 |
-
from tqdm import tqdm
|
21 |
-
from numba import jit
|
22 |
from huggingface_hub import HfApi
|
23 |
|
24 |
-
|
25 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
26 |
os.environ["COQUI_TOS_AGREED"] = "1"
|
27 |
api = HfApi(token=HF_TOKEN)
|
28 |
repo_id = "artificialguybr/video-dubbing"
|
|
|
|
|
29 |
ZipFile("ffmpeg.zip").extractall()
|
30 |
st = os.stat('ffmpeg')
|
31 |
os.chmod('ffmpeg', st.st_mode | stat.S_IEXEC)
|
32 |
-
|
|
|
33 |
model_size = "small"
|
34 |
-
model = WhisperModel(model_size, device="
|
35 |
|
36 |
def check_for_faces(video_path):
|
37 |
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
38 |
cap = cv2.VideoCapture(video_path)
|
39 |
-
|
40 |
while True:
|
41 |
ret, frame = cap.read()
|
42 |
if not ret:
|
43 |
break
|
44 |
-
|
45 |
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
46 |
faces = face_cascade.detectMultiScale(gray, 1.1, 4)
|
47 |
-
|
48 |
if len(faces) > 0:
|
49 |
return True
|
50 |
-
|
51 |
-
return False
|
52 |
|
|
|
|
|
|
|
53 |
def process_video(radio, video, target_language, has_closeup_face):
|
54 |
if target_language is None:
|
55 |
return gr.Error("Please select a Target Language for Dubbing.")
|
56 |
-
|
57 |
run_uuid = uuid.uuid4().hex[:6]
|
58 |
output_filename = f"{run_uuid}_resized_video.mp4"
|
59 |
-
ffmpeg.input(video).output(output_filename, vf='scale=-2:720').run()
|
60 |
-
|
61 |
-
video_path = output_filename
|
62 |
|
|
|
|
|
|
|
|
|
63 |
if not os.path.exists(video_path):
|
64 |
return f"Error: {video_path} does not exist."
|
65 |
-
|
66 |
-
#
|
67 |
-
video_info =
|
68 |
-
video_duration = float(video_info
|
69 |
-
|
70 |
if video_duration > 60:
|
71 |
-
os.remove(video_path)
|
72 |
return gr.Error("Video duration exceeds 1 minute. Please upload a shorter video.")
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
#
|
78 |
-
|
79 |
-
#sf.write(f"{run_uuid}_output_audio_denoised.wav", y_denoised, sr)
|
80 |
-
|
81 |
-
#sound = AudioSegment.from_file(f"{run_uuid}_output_audio_denoised.wav", format="wav")
|
82 |
-
#sound = sound.apply_gain(0)
|
83 |
-
#sound = sound.low_pass_filter(3000).high_pass_filter(100)
|
84 |
-
#sound.export(f"{run_uuid}_output_audio_processed.wav", format="wav")
|
85 |
-
|
86 |
-
shell_command = f"ffmpeg -y -i {run_uuid}_output_audio.wav -af lowpass=3000,highpass=100 {run_uuid}_output_audio_final.wav".split(" ")
|
87 |
-
subprocess.run([item for item in shell_command], capture_output=False, text=True, check=True)
|
88 |
|
89 |
print("Attempting to transcribe with Whisper...")
|
90 |
try:
|
@@ -95,54 +83,36 @@ def process_video(radio, video, target_language, has_closeup_face):
|
|
95 |
except RuntimeError as e:
|
96 |
print(f"RuntimeError encountered: {str(e)}")
|
97 |
if "CUDA failed with error device-side assert triggered" in str(e):
|
98 |
-
gr.Warning("Error. Space
|
99 |
-
# Restart the script
|
100 |
api.restart_space(repo_id=repo_id)
|
101 |
-
|
102 |
language_mapping = {'English': 'en', 'Spanish': 'es', 'French': 'fr', 'German': 'de', 'Italian': 'it', 'Portuguese': 'pt', 'Polish': 'pl', 'Turkish': 'tr', 'Russian': 'ru', 'Dutch': 'nl', 'Czech': 'cs', 'Arabic': 'ar', 'Chinese (Simplified)': 'zh-cn'}
|
103 |
target_language_code = language_mapping[target_language]
|
104 |
translator = Translator()
|
105 |
translated_text = translator.translate(whisper_text, src=whisper_language, dest=target_language_code).text
|
106 |
print(translated_text)
|
107 |
-
|
108 |
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2")
|
109 |
-
tts.to('cuda')
|
110 |
tts.tts_to_file(translated_text, speaker_wav=f"{run_uuid}_output_audio_final.wav", file_path=f"{run_uuid}_output_synth.wav", language=target_language_code)
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
pad_left = 0
|
115 |
-
pad_right = 0
|
116 |
-
rescaleFactor = 1
|
117 |
-
|
118 |
-
video_path_fix = video_path
|
119 |
-
|
120 |
-
if has_closeup_face:
|
121 |
-
has_face = True
|
122 |
-
else:
|
123 |
-
has_face = check_for_faces(video_path)
|
124 |
-
|
125 |
if has_closeup_face:
|
126 |
try:
|
127 |
-
|
128 |
-
subprocess.run(cmd, shell=True, check=True)
|
129 |
except subprocess.CalledProcessError as e:
|
130 |
if "Face not detected! Ensure the video contains a face in all the frames." in str(e.stderr):
|
131 |
-
# Fallback to FFmpeg merge
|
132 |
gr.Warning("Wav2lip didn't detect a face. Please try again with the option disabled.")
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
cmd = f"ffmpeg -i {video_path} -i {run_uuid}_output_synth.wav -c:v copy -c:a aac -strict experimental -map 0:v:0 -map 1:a:0 {run_uuid}_output_video.mp4"
|
138 |
-
subprocess.run(cmd, shell=True)
|
139 |
-
|
140 |
if not os.path.exists(f"{run_uuid}_output_video.mp4"):
|
141 |
raise FileNotFoundError(f"Error: {run_uuid}_output_video.mp4 was not generated.")
|
142 |
-
|
143 |
output_video_path = f"{run_uuid}_output_video.mp4"
|
144 |
-
|
145 |
-
# Cleanup
|
146 |
files_to_delete = [
|
147 |
f"{run_uuid}_resized_video.mp4",
|
148 |
f"{run_uuid}_output_audio.wav",
|
@@ -154,16 +124,15 @@ def process_video(radio, video, target_language, has_closeup_face):
|
|
154 |
os.remove(file)
|
155 |
except FileNotFoundError:
|
156 |
print(f"File {file} not found for deletion.")
|
157 |
-
|
158 |
-
return output_video_path
|
159 |
-
|
160 |
|
|
|
|
|
161 |
def swap(radio):
|
162 |
-
if
|
163 |
return gr.update(source="upload")
|
164 |
else:
|
165 |
return gr.update(source="webcam")
|
166 |
-
|
167 |
video = gr.Video()
|
168 |
radio = gr.Radio(["Upload", "Record"], value="Upload", show_label=False)
|
169 |
iface = gr.Interface(
|
@@ -173,9 +142,9 @@ iface = gr.Interface(
|
|
173 |
video,
|
174 |
gr.Dropdown(choices=["English", "Spanish", "French", "German", "Italian", "Portuguese", "Polish", "Turkish", "Russian", "Dutch", "Czech", "Arabic", "Chinese (Simplified)"], label="Target Language for Dubbing", value="Spanish"),
|
175 |
gr.Checkbox(
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
],
|
180 |
outputs=gr.Video(),
|
181 |
live=False,
|
@@ -183,6 +152,7 @@ iface = gr.Interface(
|
|
183 |
description="""This tool was developed by [@artificialguybr](https://twitter.com/artificialguybr) using entirely open-source tools. Special thanks to Hugging Face for the GPU support. Thanks [@yeswondwer](https://twitter.com/@yeswondwerr) for original code. Test the [Video Transcription and Translate](https://huggingface.co/spaces/artificialguybr/VIDEO-TRANSLATION-TRANSCRIPTION) space!""",
|
184 |
allow_flagging=False
|
185 |
)
|
|
|
186 |
with gr.Blocks() as demo:
|
187 |
iface.render()
|
188 |
radio.change(swap, inputs=[radio], outputs=video)
|
@@ -196,5 +166,6 @@ with gr.Blocks() as demo:
|
|
196 |
- If you need more than 1 minute, duplicate the Space and change the limit on app.py.
|
197 |
- If you incorrectly mark the 'Video has a close-up face' checkbox, the dubbing may not work as expected.
|
198 |
""")
|
|
|
199 |
demo.queue(concurrency_count=1, max_size=15)
|
200 |
demo.launch()
|
|
|
1 |
+
import os
|
2 |
+
import stat
|
3 |
+
import uuid
|
4 |
+
import subprocess
|
5 |
import tempfile
|
6 |
+
from zipfile import ZipFile
|
7 |
import gradio as gr
|
8 |
+
import spaces
|
|
|
|
|
9 |
from googletrans import Translator
|
10 |
from TTS.api import TTS
|
|
|
11 |
from faster_whisper import WhisperModel
|
|
|
12 |
import soundfile as sf
|
|
|
13 |
import numpy as np
|
|
|
|
|
|
|
14 |
import cv2
|
|
|
|
|
|
|
|
|
15 |
from huggingface_hub import HfApi
|
16 |
|
|
|
17 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
18 |
os.environ["COQUI_TOS_AGREED"] = "1"
|
19 |
api = HfApi(token=HF_TOKEN)
|
20 |
repo_id = "artificialguybr/video-dubbing"
|
21 |
+
|
22 |
+
# Extract FFmpeg
|
23 |
ZipFile("ffmpeg.zip").extractall()
|
24 |
st = os.stat('ffmpeg')
|
25 |
os.chmod('ffmpeg', st.st_mode | stat.S_IEXEC)
|
26 |
+
|
27 |
+
# Whisper model initialization
|
28 |
model_size = "small"
|
29 |
+
model = WhisperModel(model_size, device="cpu", compute_type="int8")
|
30 |
|
31 |
def check_for_faces(video_path):
|
32 |
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
33 |
cap = cv2.VideoCapture(video_path)
|
34 |
+
|
35 |
while True:
|
36 |
ret, frame = cap.read()
|
37 |
if not ret:
|
38 |
break
|
39 |
+
|
40 |
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
41 |
faces = face_cascade.detectMultiScale(gray, 1.1, 4)
|
42 |
+
|
43 |
if len(faces) > 0:
|
44 |
return True
|
|
|
|
|
45 |
|
46 |
+
return False
|
47 |
+
|
48 |
+
@spaces.GPU
|
49 |
def process_video(radio, video, target_language, has_closeup_face):
|
50 |
if target_language is None:
|
51 |
return gr.Error("Please select a Target Language for Dubbing.")
|
52 |
+
|
53 |
run_uuid = uuid.uuid4().hex[:6]
|
54 |
output_filename = f"{run_uuid}_resized_video.mp4"
|
|
|
|
|
|
|
55 |
|
56 |
+
# Use FFmpeg via subprocess
|
57 |
+
subprocess.run(['ffmpeg', '-i', video, '-vf', 'scale=-2:720', output_filename])
|
58 |
+
|
59 |
+
video_path = output_filename
|
60 |
if not os.path.exists(video_path):
|
61 |
return f"Error: {video_path} does not exist."
|
62 |
+
|
63 |
+
# Check video duration
|
64 |
+
video_info = subprocess.run(['ffprobe', '-v', 'error', '-show_entries', 'format=duration', '-of', 'default=noprint_wrappers=1:nokey=1', video_path], capture_output=True, text=True)
|
65 |
+
video_duration = float(video_info.stdout)
|
66 |
+
|
67 |
if video_duration > 60:
|
68 |
+
os.remove(video_path)
|
69 |
return gr.Error("Video duration exceeds 1 minute. Please upload a shorter video.")
|
70 |
+
|
71 |
+
# Extract audio
|
72 |
+
subprocess.run(['ffmpeg', '-i', video_path, '-acodec', 'pcm_s24le', '-ar', '48000', '-map', 'a', f"{run_uuid}_output_audio.wav"])
|
73 |
+
|
74 |
+
# Audio processing
|
75 |
+
subprocess.run(['ffmpeg', '-y', '-i', f"{run_uuid}_output_audio.wav", '-af', 'lowpass=3000,highpass=100', f"{run_uuid}_output_audio_final.wav"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
print("Attempting to transcribe with Whisper...")
|
78 |
try:
|
|
|
83 |
except RuntimeError as e:
|
84 |
print(f"RuntimeError encountered: {str(e)}")
|
85 |
if "CUDA failed with error device-side assert triggered" in str(e):
|
86 |
+
gr.Warning("Error. Space needs to restart. Please retry in a minute")
|
|
|
87 |
api.restart_space(repo_id=repo_id)
|
88 |
+
|
89 |
language_mapping = {'English': 'en', 'Spanish': 'es', 'French': 'fr', 'German': 'de', 'Italian': 'it', 'Portuguese': 'pt', 'Polish': 'pl', 'Turkish': 'tr', 'Russian': 'ru', 'Dutch': 'nl', 'Czech': 'cs', 'Arabic': 'ar', 'Chinese (Simplified)': 'zh-cn'}
|
90 |
target_language_code = language_mapping[target_language]
|
91 |
translator = Translator()
|
92 |
translated_text = translator.translate(whisper_text, src=whisper_language, dest=target_language_code).text
|
93 |
print(translated_text)
|
94 |
+
|
95 |
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2")
|
|
|
96 |
tts.tts_to_file(translated_text, speaker_wav=f"{run_uuid}_output_audio_final.wav", file_path=f"{run_uuid}_output_synth.wav", language=target_language_code)
|
97 |
|
98 |
+
has_face = check_for_faces(video_path) if not has_closeup_face else True
|
99 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
if has_closeup_face:
|
101 |
try:
|
102 |
+
subprocess.run(['python', 'Wav2Lip/inference.py', '--checkpoint_path', 'Wav2Lip/checkpoints/wav2lip_gan.pth', '--face', video_path, '--audio', f'{run_uuid}_output_synth.wav', '--pads', '0', '15', '0', '0', '--resize_factor', '1', '--nosmooth', '--outfile', f'{run_uuid}_output_video.mp4'], check=True)
|
|
|
103 |
except subprocess.CalledProcessError as e:
|
104 |
if "Face not detected! Ensure the video contains a face in all the frames." in str(e.stderr):
|
|
|
105 |
gr.Warning("Wav2lip didn't detect a face. Please try again with the option disabled.")
|
106 |
+
subprocess.run(['ffmpeg', '-i', video_path, '-i', f'{run_uuid}_output_synth.wav', '-c:v', 'copy', '-c:a', 'aac', '-strict', 'experimental', '-map', '0:v:0', '-map', '1:a:0', f'{run_uuid}_output_video.mp4'])
|
107 |
+
else:
|
108 |
+
subprocess.run(['ffmpeg', '-i', video_path, '-i', f'{run_uuid}_output_synth.wav', '-c:v', 'copy', '-c:a', 'aac', '-strict', 'experimental', '-map', '0:v:0', '-map', '1:a:0', f'{run_uuid}_output_video.mp4'])
|
109 |
+
|
|
|
|
|
|
|
110 |
if not os.path.exists(f"{run_uuid}_output_video.mp4"):
|
111 |
raise FileNotFoundError(f"Error: {run_uuid}_output_video.mp4 was not generated.")
|
112 |
+
|
113 |
output_video_path = f"{run_uuid}_output_video.mp4"
|
114 |
+
|
115 |
+
# Cleanup
|
116 |
files_to_delete = [
|
117 |
f"{run_uuid}_resized_video.mp4",
|
118 |
f"{run_uuid}_output_audio.wav",
|
|
|
124 |
os.remove(file)
|
125 |
except FileNotFoundError:
|
126 |
print(f"File {file} not found for deletion.")
|
|
|
|
|
|
|
127 |
|
128 |
+
return output_video_path
|
129 |
+
|
130 |
def swap(radio):
|
131 |
+
if radio == "Upload":
|
132 |
return gr.update(source="upload")
|
133 |
else:
|
134 |
return gr.update(source="webcam")
|
135 |
+
|
136 |
video = gr.Video()
|
137 |
radio = gr.Radio(["Upload", "Record"], value="Upload", show_label=False)
|
138 |
iface = gr.Interface(
|
|
|
142 |
video,
|
143 |
gr.Dropdown(choices=["English", "Spanish", "French", "German", "Italian", "Portuguese", "Polish", "Turkish", "Russian", "Dutch", "Czech", "Arabic", "Chinese (Simplified)"], label="Target Language for Dubbing", value="Spanish"),
|
144 |
gr.Checkbox(
|
145 |
+
label="Video has a close-up face. Use Wav2lip.",
|
146 |
+
value=False,
|
147 |
+
info="Say if video have close-up face. For Wav2lip. Will not work if checked wrongly.")
|
148 |
],
|
149 |
outputs=gr.Video(),
|
150 |
live=False,
|
|
|
152 |
description="""This tool was developed by [@artificialguybr](https://twitter.com/artificialguybr) using entirely open-source tools. Special thanks to Hugging Face for the GPU support. Thanks [@yeswondwer](https://twitter.com/@yeswondwerr) for original code. Test the [Video Transcription and Translate](https://huggingface.co/spaces/artificialguybr/VIDEO-TRANSLATION-TRANSCRIPTION) space!""",
|
153 |
allow_flagging=False
|
154 |
)
|
155 |
+
|
156 |
with gr.Blocks() as demo:
|
157 |
iface.render()
|
158 |
radio.change(swap, inputs=[radio], outputs=video)
|
|
|
166 |
- If you need more than 1 minute, duplicate the Space and change the limit on app.py.
|
167 |
- If you incorrectly mark the 'Video has a close-up face' checkbox, the dubbing may not work as expected.
|
168 |
""")
|
169 |
+
|
170 |
demo.queue(concurrency_count=1, max_size=15)
|
171 |
demo.launch()
|