Find_The_Fake / models.py
Arnab Das
bug fix
5fde11f
import torch
import random
import fairseq
import numpy as np
import torch.nn as nn
from torch import Tensor
from typing import Union
import torch.nn.functional as F
from huggingface_hub import hf_hub_download
class SSLModel(nn.Module):
def __init__(self, device):
super(SSLModel, self).__init__()
cp_path = hf_hub_download("arnabdas8901/aasist-trained-asvspoof2024", filename='xlsr2_300m.pt') #'xlsr2_300m.pt' # Change the pre-trained XLSR model path.
model, cfg, task = fairseq.checkpoint_utils.load_model_ensemble_and_task([cp_path])
self.model = model[0]
self.device = device
self.out_dim = 1024
return
def extract_feat(self, input_data):
# put the model to GPU if it not there
if next(self.model.parameters()).device != input_data.device \
or next(self.model.parameters()).dtype != input_data.dtype:
self.model.to(input_data.device, dtype=input_data.dtype)
self.model.train()
if True:
# input should be in shape (batch, length)
if input_data.ndim == 3:
input_tmp = input_data[:, :, 0]
else:
input_tmp = input_data
# [batch, length, dim]
emb = self.model(input_tmp, mask=False, features_only=True)['x']
return emb
# ---------AASIST back-end------------------------#
''' Jee-weon Jung, Hee-Soo Heo, Hemlata Tak, Hye-jin Shim, Joon Son Chung, Bong-Jin Lee, Ha-Jin Yu and Nicholas Evans.
AASIST: Audio Anti-Spoofing Using Integrated Spectro-Temporal Graph Attention Networks.
In Proc. ICASSP 2022, pp: 6367--6371.'''
class GraphAttentionLayer(nn.Module):
def __init__(self, in_dim, out_dim, **kwargs):
super().__init__()
# attention map
self.att_proj = nn.Linear(in_dim, out_dim)
self.att_weight = self._init_new_params(out_dim, 1)
# project
self.proj_with_att = nn.Linear(in_dim, out_dim)
self.proj_without_att = nn.Linear(in_dim, out_dim)
# batch norm
self.bn = nn.BatchNorm1d(out_dim)
# dropout for inputs
self.input_drop = nn.Dropout(p=0.2)
# activate
self.act = nn.SELU(inplace=True)
# temperature
self.temp = 1.
if "temperature" in kwargs:
self.temp = kwargs["temperature"]
def forward(self, x):
'''
x :(#bs, #node, #dim)
'''
# apply input dropout
x = self.input_drop(x)
# derive attention map
att_map = self._derive_att_map(x)
# projection
x = self._project(x, att_map)
# apply batch norm
x = self._apply_BN(x)
x = self.act(x)
return x
def _pairwise_mul_nodes(self, x):
'''
Calculates pairwise multiplication of nodes.
- for attention map
x :(#bs, #node, #dim)
out_shape :(#bs, #node, #node, #dim)
'''
nb_nodes = x.size(1)
x = x.unsqueeze(2).expand(-1, -1, nb_nodes, -1)
x_mirror = x.transpose(1, 2)
return x * x_mirror
def _derive_att_map(self, x):
'''
x :(#bs, #node, #dim)
out_shape :(#bs, #node, #node, 1)
'''
att_map = self._pairwise_mul_nodes(x)
# size: (#bs, #node, #node, #dim_out)
att_map = torch.tanh(self.att_proj(att_map))
# size: (#bs, #node, #node, 1)
att_map = torch.matmul(att_map, self.att_weight)
# apply temperature
att_map = att_map / self.temp
att_map = F.softmax(att_map, dim=-2)
return att_map
def _project(self, x, att_map):
x1 = self.proj_with_att(torch.matmul(att_map.squeeze(-1), x))
x2 = self.proj_without_att(x)
return x1 + x2
def _apply_BN(self, x):
org_size = x.size()
x = x.view(-1, org_size[-1])
x = self.bn(x)
x = x.view(org_size)
return x
def _init_new_params(self, *size):
out = nn.Parameter(torch.FloatTensor(*size))
nn.init.xavier_normal_(out)
return out
class HtrgGraphAttentionLayer(nn.Module):
def __init__(self, in_dim, out_dim, **kwargs):
super().__init__()
self.proj_type1 = nn.Linear(in_dim, in_dim)
self.proj_type2 = nn.Linear(in_dim, in_dim)
# attention map
self.att_proj = nn.Linear(in_dim, out_dim)
self.att_projM = nn.Linear(in_dim, out_dim)
self.att_weight11 = self._init_new_params(out_dim, 1)
self.att_weight22 = self._init_new_params(out_dim, 1)
self.att_weight12 = self._init_new_params(out_dim, 1)
self.att_weightM = self._init_new_params(out_dim, 1)
# project
self.proj_with_att = nn.Linear(in_dim, out_dim)
self.proj_without_att = nn.Linear(in_dim, out_dim)
self.proj_with_attM = nn.Linear(in_dim, out_dim)
self.proj_without_attM = nn.Linear(in_dim, out_dim)
# batch norm
self.bn = nn.BatchNorm1d(out_dim)
# dropout for inputs
self.input_drop = nn.Dropout(p=0.2)
# activate
self.act = nn.SELU(inplace=True)
# temperature
self.temp = 1.
if "temperature" in kwargs:
self.temp = kwargs["temperature"]
def forward(self, x1, x2, master=None):
'''
x1 :(#bs, #node, #dim)
x2 :(#bs, #node, #dim)
'''
# print('x1',x1.shape)
# print('x2',x2.shape)
num_type1 = x1.size(1)
num_type2 = x2.size(1)
# print('num_type1',num_type1)
# print('num_type2',num_type2)
x1 = self.proj_type1(x1)
# print('proj_type1',x1.shape)
x2 = self.proj_type2(x2)
# print('proj_type2',x2.shape)
x = torch.cat([x1, x2], dim=1)
# print('Concat x1 and x2',x.shape)
if master is None:
master = torch.mean(x, dim=1, keepdim=True)
# print('master',master.shape)
# apply input dropout
x = self.input_drop(x)
# derive attention map
att_map = self._derive_att_map(x, num_type1, num_type2)
# print('master',master.shape)
# directional edge for master node
master = self._update_master(x, master)
# print('master',master.shape)
# projection
x = self._project(x, att_map)
# print('proj x',x.shape)
# apply batch norm
x = self._apply_BN(x)
x = self.act(x)
x1 = x.narrow(1, 0, num_type1)
# print('x1',x1.shape)
x2 = x.narrow(1, num_type1, num_type2)
# print('x2',x2.shape)
return x1, x2, master
def _update_master(self, x, master):
att_map = self._derive_att_map_master(x, master)
master = self._project_master(x, master, att_map)
return master
def _pairwise_mul_nodes(self, x):
'''
Calculates pairwise multiplication of nodes.
- for attention map
x :(#bs, #node, #dim)
out_shape :(#bs, #node, #node, #dim)
'''
nb_nodes = x.size(1)
x = x.unsqueeze(2).expand(-1, -1, nb_nodes, -1)
x_mirror = x.transpose(1, 2)
return x * x_mirror
def _derive_att_map_master(self, x, master):
'''
x :(#bs, #node, #dim)
out_shape :(#bs, #node, #node, 1)
'''
att_map = x * master
att_map = torch.tanh(self.att_projM(att_map))
att_map = torch.matmul(att_map, self.att_weightM)
# apply temperature
att_map = att_map / self.temp
att_map = F.softmax(att_map, dim=-2)
return att_map
def _derive_att_map(self, x, num_type1, num_type2):
'''
x :(#bs, #node, #dim)
out_shape :(#bs, #node, #node, 1)
'''
att_map = self._pairwise_mul_nodes(x)
# size: (#bs, #node, #node, #dim_out)
att_map = torch.tanh(self.att_proj(att_map))
# size: (#bs, #node, #node, 1)
att_board = torch.zeros_like(att_map[:, :, :, 0]).unsqueeze(-1)
att_board[:, :num_type1, :num_type1, :] = torch.matmul(
att_map[:, :num_type1, :num_type1, :], self.att_weight11)
att_board[:, num_type1:, num_type1:, :] = torch.matmul(
att_map[:, num_type1:, num_type1:, :], self.att_weight22)
att_board[:, :num_type1, num_type1:, :] = torch.matmul(
att_map[:, :num_type1, num_type1:, :], self.att_weight12)
att_board[:, num_type1:, :num_type1, :] = torch.matmul(
att_map[:, num_type1:, :num_type1, :], self.att_weight12)
att_map = att_board
# apply temperature
att_map = att_map / self.temp
att_map = F.softmax(att_map, dim=-2)
return att_map
def _project(self, x, att_map):
x1 = self.proj_with_att(torch.matmul(att_map.squeeze(-1), x))
x2 = self.proj_without_att(x)
return x1 + x2
def _project_master(self, x, master, att_map):
x1 = self.proj_with_attM(torch.matmul(
att_map.squeeze(-1).unsqueeze(1), x))
x2 = self.proj_without_attM(master)
return x1 + x2
def _apply_BN(self, x):
org_size = x.size()
x = x.view(-1, org_size[-1])
x = self.bn(x)
x = x.view(org_size)
return x
def _init_new_params(self, *size):
out = nn.Parameter(torch.FloatTensor(*size))
nn.init.xavier_normal_(out)
return out
class GraphPool(nn.Module):
def __init__(self, k: float, in_dim: int, p: Union[float, int]):
super().__init__()
self.k = k
self.sigmoid = nn.Sigmoid()
self.proj = nn.Linear(in_dim, 1)
self.drop = nn.Dropout(p=p) if p > 0 else nn.Identity()
self.in_dim = in_dim
def forward(self, h):
Z = self.drop(h)
weights = self.proj(Z)
scores = self.sigmoid(weights)
new_h = self.top_k_graph(scores, h, self.k)
return new_h
def top_k_graph(self, scores, h, k):
"""
args
=====
scores: attention-based weights (#bs, #node, 1)
h: graph data (#bs, #node, #dim)
k: ratio of remaining nodes, (float)
returns
=====
h: graph pool applied data (#bs, #node', #dim)
"""
_, n_nodes, n_feat = h.size()
n_nodes = max(int(n_nodes * k), 1)
_, idx = torch.topk(scores, n_nodes, dim=1)
idx = idx.expand(-1, -1, n_feat)
h = h * scores
h = torch.gather(h, 1, idx)
return h
class Residual_block(nn.Module):
def __init__(self, nb_filts, first=False):
super().__init__()
self.first = first
if not self.first:
self.bn1 = nn.BatchNorm2d(num_features=nb_filts[0])
self.conv1 = nn.Conv2d(in_channels=nb_filts[0],
out_channels=nb_filts[1],
kernel_size=(2, 3),
padding=(1, 1),
stride=1)
self.selu = nn.SELU(inplace=True)
self.bn2 = nn.BatchNorm2d(num_features=nb_filts[1])
self.conv2 = nn.Conv2d(in_channels=nb_filts[1],
out_channels=nb_filts[1],
kernel_size=(2, 3),
padding=(0, 1),
stride=1)
if nb_filts[0] != nb_filts[1]:
self.downsample = True
self.conv_downsample = nn.Conv2d(in_channels=nb_filts[0],
out_channels=nb_filts[1],
padding=(0, 1),
kernel_size=(1, 3),
stride=1)
else:
self.downsample = False
def forward(self, x):
identity = x
if not self.first:
out = self.bn1(x)
out = self.selu(out)
else:
out = x
# print('out',out.shape)
out = self.conv1(x)
# print('aft conv1 out',out.shape)
out = self.bn2(out)
out = self.selu(out)
# print('out',out.shape)
out = self.conv2(out)
# print('conv2 out',out.shape)
if self.downsample:
identity = self.conv_downsample(identity)
out += identity
# out = self.mp(out)
return out
class Residual_block_aasist(nn.Module):
def __init__(self, nb_filts, first=False):
super().__init__()
self.first = first
if not self.first:
self.bn1 = nn.BatchNorm2d(num_features=nb_filts[0])
self.conv1 = nn.Conv2d(in_channels=nb_filts[0],
out_channels=nb_filts[1],
kernel_size=(2, 3),
padding=(1, 1),
stride=1)
self.selu = nn.SELU(inplace=True)
self.bn2 = nn.BatchNorm2d(num_features=nb_filts[1])
self.conv2 = nn.Conv2d(in_channels=nb_filts[1],
out_channels=nb_filts[1],
kernel_size=(2, 3),
padding=(0, 1),
stride=1)
if nb_filts[0] != nb_filts[1]:
self.downsample = True
self.conv_downsample = nn.Conv2d(in_channels=nb_filts[0],
out_channels=nb_filts[1],
padding=(0, 1),
kernel_size=(1, 3),
stride=1)
else:
self.downsample = False
self.mp = nn.MaxPool2d((1, 3))
def forward(self, x):
identity = x
if not self.first:
out = self.bn1(x)
out = self.selu(out)
else:
out = x
out = self.conv1(x)
# print('aft conv1 out',out.shape)
out = self.bn2(out)
out = self.selu(out)
# print('out',out.shape)
out = self.conv2(out)
# print('conv2 out',out.shape)
if self.downsample:
identity = self.conv_downsample(identity)
out += identity
out = self.mp(out)
return out
class Model(nn.Module):
def __init__(self, args, device):
super().__init__()
self.device = device
# AASIST parameters
filts = [128, [1, 32], [32, 32], [32, 64], [64, 64]]
gat_dims = [64, 32]
pool_ratios = [0.5, 0.5, 0.5, 0.5]
temperatures = [2.0, 2.0, 100.0, 100.0]
####
# create network wav2vec 2.0
####
self.ssl_model = SSLModel(self.device)
self.LL = nn.Linear(self.ssl_model.out_dim, 128)
self.first_bn = nn.BatchNorm2d(num_features=1)
self.first_bn1 = nn.BatchNorm2d(num_features=64)
self.drop = nn.Dropout(0.5, inplace=True)
self.drop_way = nn.Dropout(0.2, inplace=True)
self.selu = nn.SELU(inplace=True)
# RawNet2 encoder
self.encoder = nn.Sequential(
nn.Sequential(Residual_block(nb_filts=filts[1], first=True)),
nn.Sequential(Residual_block(nb_filts=filts[2])),
nn.Sequential(Residual_block(nb_filts=filts[3])),
nn.Sequential(Residual_block(nb_filts=filts[4])),
nn.Sequential(Residual_block(nb_filts=filts[4])),
nn.Sequential(Residual_block(nb_filts=filts[4])))
self.attention = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=(1, 1)),
nn.SELU(inplace=True),
nn.BatchNorm2d(128),
nn.Conv2d(128, 64, kernel_size=(1, 1)),
)
# position encoding
self.pos_S = nn.Parameter(torch.randn(1, 42, filts[-1][-1]))
self.master1 = nn.Parameter(torch.randn(1, 1, gat_dims[0]))
self.master2 = nn.Parameter(torch.randn(1, 1, gat_dims[0]))
# Graph module
self.GAT_layer_S = GraphAttentionLayer(filts[-1][-1],
gat_dims[0],
temperature=temperatures[0])
self.GAT_layer_T = GraphAttentionLayer(filts[-1][-1],
gat_dims[0],
temperature=temperatures[1])
# HS-GAL layer
self.HtrgGAT_layer_ST11 = HtrgGraphAttentionLayer(
gat_dims[0], gat_dims[1], temperature=temperatures[2])
self.HtrgGAT_layer_ST12 = HtrgGraphAttentionLayer(
gat_dims[1], gat_dims[1], temperature=temperatures[2])
self.HtrgGAT_layer_ST21 = HtrgGraphAttentionLayer(
gat_dims[0], gat_dims[1], temperature=temperatures[2])
self.HtrgGAT_layer_ST22 = HtrgGraphAttentionLayer(
gat_dims[1], gat_dims[1], temperature=temperatures[2])
# Graph pooling layers
self.pool_S = GraphPool(pool_ratios[0], gat_dims[0], 0.3)
self.pool_T = GraphPool(pool_ratios[1], gat_dims[0], 0.3)
self.pool_hS1 = GraphPool(pool_ratios[2], gat_dims[1], 0.3)
self.pool_hT1 = GraphPool(pool_ratios[2], gat_dims[1], 0.3)
self.pool_hS2 = GraphPool(pool_ratios[2], gat_dims[1], 0.3)
self.pool_hT2 = GraphPool(pool_ratios[2], gat_dims[1], 0.3)
self.out_layer = nn.Linear(5 * gat_dims[1], 2)
def forward(self, x):
# -------pre-trained Wav2vec model fine tunning ------------------------##
x_ssl_feat = self.ssl_model.extract_feat(x.squeeze(-1))
x = self.LL(x_ssl_feat) # (bs,frame_number,feat_out_dim)
# post-processing on front-end features
x = x.transpose(1, 2) # (bs,feat_out_dim,frame_number)
x = x.unsqueeze(dim=1) # add channel
x = F.max_pool2d(x, (3, 3))
x = self.first_bn(x)
x = self.selu(x)
# RawNet2-based encoder
x = self.encoder(x)
x = self.first_bn1(x)
x = self.selu(x)
w = self.attention(x)
# ------------SA for spectral feature-------------#
w1 = F.softmax(w, dim=-1)
m = torch.sum(x * w1, dim=-1)
e_S = m.transpose(1, 2) + self.pos_S
# graph module layer
gat_S = self.GAT_layer_S(e_S)
out_S = self.pool_S(gat_S) # (#bs, #node, #dim)
# ------------SA for temporal feature-------------#
w2 = F.softmax(w, dim=-2)
m1 = torch.sum(x * w2, dim=-2)
e_T = m1.transpose(1, 2)
# graph module layer
gat_T = self.GAT_layer_T(e_T)
out_T = self.pool_T(gat_T)
# learnable master node
master1 = self.master1.expand(x.size(0), -1, -1)
master2 = self.master2.expand(x.size(0), -1, -1)
# inference 1
out_T1, out_S1, master1 = self.HtrgGAT_layer_ST11(
out_T, out_S, master=self.master1)
out_S1 = self.pool_hS1(out_S1)
out_T1 = self.pool_hT1(out_T1)
out_T_aug, out_S_aug, master_aug = self.HtrgGAT_layer_ST12(
out_T1, out_S1, master=master1)
out_T1 = out_T1 + out_T_aug
out_S1 = out_S1 + out_S_aug
master1 = master1 + master_aug
# inference 2
out_T2, out_S2, master2 = self.HtrgGAT_layer_ST21(
out_T, out_S, master=self.master2)
out_S2 = self.pool_hS2(out_S2)
out_T2 = self.pool_hT2(out_T2)
out_T_aug, out_S_aug, master_aug = self.HtrgGAT_layer_ST22(
out_T2, out_S2, master=master2)
out_T2 = out_T2 + out_T_aug
out_S2 = out_S2 + out_S_aug
master2 = master2 + master_aug
out_T1 = self.drop_way(out_T1)
out_T2 = self.drop_way(out_T2)
out_S1 = self.drop_way(out_S1)
out_S2 = self.drop_way(out_S2)
master1 = self.drop_way(master1)
master2 = self.drop_way(master2)
out_T = torch.max(out_T1, out_T2)
out_S = torch.max(out_S1, out_S2)
master = torch.max(master1, master2)
# Readout operation
T_max, _ = torch.max(torch.abs(out_T), dim=1)
T_avg = torch.mean(out_T, dim=1)
S_max, _ = torch.max(torch.abs(out_S), dim=1)
S_avg = torch.mean(out_S, dim=1)
last_hidden = torch.cat(
[T_max, T_avg, S_max, S_avg, master.squeeze(1)], dim=1)
last_hidden = self.drop(last_hidden)
output = self.out_layer(last_hidden)
return output
class CONV(nn.Module):
@staticmethod
def to_mel(hz):
return 2595 * np.log10(1 + hz / 700)
@staticmethod
def to_hz(mel):
return 700 * (10**(mel / 2595) - 1)
def __init__(self,
out_channels,
kernel_size,
sample_rate=16000,
in_channels=1,
stride=1,
padding=0,
dilation=1,
bias=False,
groups=1,
mask=False):
super().__init__()
if in_channels != 1:
msg = "SincConv only support one input channel (here, in_channels = {%i})" % (
in_channels)
raise ValueError(msg)
self.out_channels = out_channels
self.kernel_size = kernel_size
self.sample_rate = sample_rate
# Forcing the filters to be odd (i.e, perfectly symmetrics)
if kernel_size % 2 == 0:
self.kernel_size = self.kernel_size + 1
self.stride = stride
self.padding = padding
self.dilation = dilation
self.mask = mask
if bias:
raise ValueError('SincConv does not support bias.')
if groups > 1:
raise ValueError('SincConv does not support groups.')
NFFT = 512
f = int(self.sample_rate / 2) * np.linspace(0, 1, int(NFFT / 2) + 1)
fmel = self.to_mel(f)
fmelmax = np.max(fmel)
fmelmin = np.min(fmel)
filbandwidthsmel = np.linspace(fmelmin, fmelmax, self.out_channels + 1)
filbandwidthsf = self.to_hz(filbandwidthsmel)
self.mel = filbandwidthsf
self.hsupp = torch.arange(-(self.kernel_size - 1) / 2,
(self.kernel_size - 1) / 2 + 1)
self.band_pass = torch.zeros(self.out_channels, self.kernel_size)
for i in range(len(self.mel) - 1):
fmin = self.mel[i]
fmax = self.mel[i + 1]
hHigh = (2*fmax/self.sample_rate) * \
np.sinc(2*fmax*self.hsupp/self.sample_rate)
hLow = (2*fmin/self.sample_rate) * \
np.sinc(2*fmin*self.hsupp/self.sample_rate)
hideal = hHigh - hLow
self.band_pass[i, :] = Tensor(np.hamming(
self.kernel_size)) * Tensor(hideal)
def forward(self, x, mask=False):
band_pass_filter = self.band_pass.clone().to(x.device)
if mask:
A = np.random.uniform(0, 20)
A = int(A)
A0 = random.randint(0, band_pass_filter.shape[0] - A)
band_pass_filter[A0:A0 + A, :] = 0
else:
band_pass_filter = band_pass_filter
self.filters = (band_pass_filter).view(self.out_channels, 1,
self.kernel_size)
return F.conv1d(x,
self.filters,
stride=self.stride,
padding=self.padding,
dilation=self.dilation,
bias=None,
groups=1)
class AASIST_Model(nn.Module):
def __init__(self, args, device):
super().__init__()
filts = [70, [1, 32], [32, 32], [32, 64], [64, 64]]
gat_dims = [64, 32]
pool_ratios =[0.5, 0.7, 0.5, 0.5]
temperatures =[2.0, 2.0, 100.0, 100.0]
self.conv_time = CONV(out_channels=filts[0],
kernel_size=128,
in_channels=1)
self.first_bn = nn.BatchNorm2d(num_features=1)
self.drop = nn.Dropout(0.5, inplace=True)
self.drop_way = nn.Dropout(0.2, inplace=True)
self.selu = nn.SELU(inplace=True)
self.encoder = nn.Sequential(
nn.Sequential(Residual_block_aasist(nb_filts=filts[1], first=True)),
nn.Sequential(Residual_block_aasist(nb_filts=filts[2])),
nn.Sequential(Residual_block_aasist(nb_filts=filts[3])),
nn.Sequential(Residual_block_aasist(nb_filts=filts[4])),
nn.Sequential(Residual_block_aasist(nb_filts=filts[4])),
nn.Sequential(Residual_block_aasist(nb_filts=filts[4])))
self.pos_S = nn.Parameter(torch.randn(1, 23, filts[-1][-1]))
self.master1 = nn.Parameter(torch.randn(1, 1, gat_dims[0]))
self.master2 = nn.Parameter(torch.randn(1, 1, gat_dims[0]))
self.GAT_layer_S = GraphAttentionLayer(filts[-1][-1],
gat_dims[0],
temperature=temperatures[0])
self.GAT_layer_T = GraphAttentionLayer(filts[-1][-1],
gat_dims[0],
temperature=temperatures[1])
self.HtrgGAT_layer_ST11 = HtrgGraphAttentionLayer(
gat_dims[0], gat_dims[1], temperature=temperatures[2])
self.HtrgGAT_layer_ST12 = HtrgGraphAttentionLayer(
gat_dims[1], gat_dims[1], temperature=temperatures[2])
self.HtrgGAT_layer_ST21 = HtrgGraphAttentionLayer(
gat_dims[0], gat_dims[1], temperature=temperatures[2])
self.HtrgGAT_layer_ST22 = HtrgGraphAttentionLayer(
gat_dims[1], gat_dims[1], temperature=temperatures[2])
self.pool_S = GraphPool(pool_ratios[0], gat_dims[0], 0.3)
self.pool_T = GraphPool(pool_ratios[1], gat_dims[0], 0.3)
self.pool_hS1 = GraphPool(pool_ratios[2], gat_dims[1], 0.3)
self.pool_hT1 = GraphPool(pool_ratios[2], gat_dims[1], 0.3)
self.pool_hS2 = GraphPool(pool_ratios[2], gat_dims[1], 0.3)
self.pool_hT2 = GraphPool(pool_ratios[2], gat_dims[1], 0.3)
self.out_layer = nn.Linear(5 * gat_dims[1], 2)
def forward(self, x, Freq_aug=False):
x = x.unsqueeze(1)
x = self.conv_time(x, mask=Freq_aug)
x = x.unsqueeze(dim=1)
x = F.max_pool2d(torch.abs(x), (3, 3))
x = self.first_bn(x)
x = self.selu(x)
# get embeddings using encoder
# (#bs, #filt, #spec, #seq)
e = self.encoder(x)
# spectral GAT (GAT-S)
e_S, _ = torch.max(torch.abs(e), dim=3) # max along time
e_S = e_S.transpose(1, 2) + self.pos_S
gat_S = self.GAT_layer_S(e_S)
out_S = self.pool_S(gat_S) # (#bs, #node, #dim)
# temporal GAT (GAT-T)
e_T, _ = torch.max(torch.abs(e), dim=2) # max along freq
e_T = e_T.transpose(1, 2)
gat_T = self.GAT_layer_T(e_T)
out_T = self.pool_T(gat_T)
# learnable master node
master1 = self.master1.expand(x.size(0), -1, -1)
master2 = self.master2.expand(x.size(0), -1, -1)
# inference 1
out_T1, out_S1, master1 = self.HtrgGAT_layer_ST11(
out_T, out_S, master=self.master1)
out_S1 = self.pool_hS1(out_S1)
out_T1 = self.pool_hT1(out_T1)
out_T_aug, out_S_aug, master_aug = self.HtrgGAT_layer_ST12(
out_T1, out_S1, master=master1)
out_T1 = out_T1 + out_T_aug
out_S1 = out_S1 + out_S_aug
master1 = master1 + master_aug
# inference 2
out_T2, out_S2, master2 = self.HtrgGAT_layer_ST21(
out_T, out_S, master=self.master2)
out_S2 = self.pool_hS2(out_S2)
out_T2 = self.pool_hT2(out_T2)
out_T_aug, out_S_aug, master_aug = self.HtrgGAT_layer_ST22(
out_T2, out_S2, master=master2)
out_T2 = out_T2 + out_T_aug
out_S2 = out_S2 + out_S_aug
master2 = master2 + master_aug
out_T1 = self.drop_way(out_T1)
out_T2 = self.drop_way(out_T2)
out_S1 = self.drop_way(out_S1)
out_S2 = self.drop_way(out_S2)
master1 = self.drop_way(master1)
master2 = self.drop_way(master2)
out_T = torch.max(out_T1, out_T2)
out_S = torch.max(out_S1, out_S2)
master = torch.max(master1, master2)
T_max, _ = torch.max(torch.abs(out_T), dim=1)
T_avg = torch.mean(out_T, dim=1)
S_max, _ = torch.max(torch.abs(out_S), dim=1)
S_avg = torch.mean(out_S, dim=1)
last_hidden = torch.cat(
[T_max, T_avg, S_max, S_avg, master.squeeze(1)], dim=1)
last_hidden = self.drop(last_hidden)
output = self.out_layer(last_hidden)
return output