Spaces:
Sleeping
Sleeping
File size: 28,819 Bytes
d40d6d4 b30e39a d40d6d4 b30e39a d40d6d4 b30e39a d40d6d4 5fde11f d40d6d4 5fde11f d40d6d4 b30e39a c23ea28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 |
import torch
import random
import fairseq
import numpy as np
import torch.nn as nn
from torch import Tensor
from typing import Union
import torch.nn.functional as F
from huggingface_hub import hf_hub_download
class SSLModel(nn.Module):
def __init__(self, device):
super(SSLModel, self).__init__()
cp_path = hf_hub_download("arnabdas8901/aasist-trained-asvspoof2024", filename='xlsr2_300m.pt') #'xlsr2_300m.pt' # Change the pre-trained XLSR model path.
model, cfg, task = fairseq.checkpoint_utils.load_model_ensemble_and_task([cp_path])
self.model = model[0]
self.device = device
self.out_dim = 1024
return
def extract_feat(self, input_data):
# put the model to GPU if it not there
if next(self.model.parameters()).device != input_data.device \
or next(self.model.parameters()).dtype != input_data.dtype:
self.model.to(input_data.device, dtype=input_data.dtype)
self.model.train()
if True:
# input should be in shape (batch, length)
if input_data.ndim == 3:
input_tmp = input_data[:, :, 0]
else:
input_tmp = input_data
# [batch, length, dim]
emb = self.model(input_tmp, mask=False, features_only=True)['x']
return emb
# ---------AASIST back-end------------------------#
''' Jee-weon Jung, Hee-Soo Heo, Hemlata Tak, Hye-jin Shim, Joon Son Chung, Bong-Jin Lee, Ha-Jin Yu and Nicholas Evans.
AASIST: Audio Anti-Spoofing Using Integrated Spectro-Temporal Graph Attention Networks.
In Proc. ICASSP 2022, pp: 6367--6371.'''
class GraphAttentionLayer(nn.Module):
def __init__(self, in_dim, out_dim, **kwargs):
super().__init__()
# attention map
self.att_proj = nn.Linear(in_dim, out_dim)
self.att_weight = self._init_new_params(out_dim, 1)
# project
self.proj_with_att = nn.Linear(in_dim, out_dim)
self.proj_without_att = nn.Linear(in_dim, out_dim)
# batch norm
self.bn = nn.BatchNorm1d(out_dim)
# dropout for inputs
self.input_drop = nn.Dropout(p=0.2)
# activate
self.act = nn.SELU(inplace=True)
# temperature
self.temp = 1.
if "temperature" in kwargs:
self.temp = kwargs["temperature"]
def forward(self, x):
'''
x :(#bs, #node, #dim)
'''
# apply input dropout
x = self.input_drop(x)
# derive attention map
att_map = self._derive_att_map(x)
# projection
x = self._project(x, att_map)
# apply batch norm
x = self._apply_BN(x)
x = self.act(x)
return x
def _pairwise_mul_nodes(self, x):
'''
Calculates pairwise multiplication of nodes.
- for attention map
x :(#bs, #node, #dim)
out_shape :(#bs, #node, #node, #dim)
'''
nb_nodes = x.size(1)
x = x.unsqueeze(2).expand(-1, -1, nb_nodes, -1)
x_mirror = x.transpose(1, 2)
return x * x_mirror
def _derive_att_map(self, x):
'''
x :(#bs, #node, #dim)
out_shape :(#bs, #node, #node, 1)
'''
att_map = self._pairwise_mul_nodes(x)
# size: (#bs, #node, #node, #dim_out)
att_map = torch.tanh(self.att_proj(att_map))
# size: (#bs, #node, #node, 1)
att_map = torch.matmul(att_map, self.att_weight)
# apply temperature
att_map = att_map / self.temp
att_map = F.softmax(att_map, dim=-2)
return att_map
def _project(self, x, att_map):
x1 = self.proj_with_att(torch.matmul(att_map.squeeze(-1), x))
x2 = self.proj_without_att(x)
return x1 + x2
def _apply_BN(self, x):
org_size = x.size()
x = x.view(-1, org_size[-1])
x = self.bn(x)
x = x.view(org_size)
return x
def _init_new_params(self, *size):
out = nn.Parameter(torch.FloatTensor(*size))
nn.init.xavier_normal_(out)
return out
class HtrgGraphAttentionLayer(nn.Module):
def __init__(self, in_dim, out_dim, **kwargs):
super().__init__()
self.proj_type1 = nn.Linear(in_dim, in_dim)
self.proj_type2 = nn.Linear(in_dim, in_dim)
# attention map
self.att_proj = nn.Linear(in_dim, out_dim)
self.att_projM = nn.Linear(in_dim, out_dim)
self.att_weight11 = self._init_new_params(out_dim, 1)
self.att_weight22 = self._init_new_params(out_dim, 1)
self.att_weight12 = self._init_new_params(out_dim, 1)
self.att_weightM = self._init_new_params(out_dim, 1)
# project
self.proj_with_att = nn.Linear(in_dim, out_dim)
self.proj_without_att = nn.Linear(in_dim, out_dim)
self.proj_with_attM = nn.Linear(in_dim, out_dim)
self.proj_without_attM = nn.Linear(in_dim, out_dim)
# batch norm
self.bn = nn.BatchNorm1d(out_dim)
# dropout for inputs
self.input_drop = nn.Dropout(p=0.2)
# activate
self.act = nn.SELU(inplace=True)
# temperature
self.temp = 1.
if "temperature" in kwargs:
self.temp = kwargs["temperature"]
def forward(self, x1, x2, master=None):
'''
x1 :(#bs, #node, #dim)
x2 :(#bs, #node, #dim)
'''
# print('x1',x1.shape)
# print('x2',x2.shape)
num_type1 = x1.size(1)
num_type2 = x2.size(1)
# print('num_type1',num_type1)
# print('num_type2',num_type2)
x1 = self.proj_type1(x1)
# print('proj_type1',x1.shape)
x2 = self.proj_type2(x2)
# print('proj_type2',x2.shape)
x = torch.cat([x1, x2], dim=1)
# print('Concat x1 and x2',x.shape)
if master is None:
master = torch.mean(x, dim=1, keepdim=True)
# print('master',master.shape)
# apply input dropout
x = self.input_drop(x)
# derive attention map
att_map = self._derive_att_map(x, num_type1, num_type2)
# print('master',master.shape)
# directional edge for master node
master = self._update_master(x, master)
# print('master',master.shape)
# projection
x = self._project(x, att_map)
# print('proj x',x.shape)
# apply batch norm
x = self._apply_BN(x)
x = self.act(x)
x1 = x.narrow(1, 0, num_type1)
# print('x1',x1.shape)
x2 = x.narrow(1, num_type1, num_type2)
# print('x2',x2.shape)
return x1, x2, master
def _update_master(self, x, master):
att_map = self._derive_att_map_master(x, master)
master = self._project_master(x, master, att_map)
return master
def _pairwise_mul_nodes(self, x):
'''
Calculates pairwise multiplication of nodes.
- for attention map
x :(#bs, #node, #dim)
out_shape :(#bs, #node, #node, #dim)
'''
nb_nodes = x.size(1)
x = x.unsqueeze(2).expand(-1, -1, nb_nodes, -1)
x_mirror = x.transpose(1, 2)
return x * x_mirror
def _derive_att_map_master(self, x, master):
'''
x :(#bs, #node, #dim)
out_shape :(#bs, #node, #node, 1)
'''
att_map = x * master
att_map = torch.tanh(self.att_projM(att_map))
att_map = torch.matmul(att_map, self.att_weightM)
# apply temperature
att_map = att_map / self.temp
att_map = F.softmax(att_map, dim=-2)
return att_map
def _derive_att_map(self, x, num_type1, num_type2):
'''
x :(#bs, #node, #dim)
out_shape :(#bs, #node, #node, 1)
'''
att_map = self._pairwise_mul_nodes(x)
# size: (#bs, #node, #node, #dim_out)
att_map = torch.tanh(self.att_proj(att_map))
# size: (#bs, #node, #node, 1)
att_board = torch.zeros_like(att_map[:, :, :, 0]).unsqueeze(-1)
att_board[:, :num_type1, :num_type1, :] = torch.matmul(
att_map[:, :num_type1, :num_type1, :], self.att_weight11)
att_board[:, num_type1:, num_type1:, :] = torch.matmul(
att_map[:, num_type1:, num_type1:, :], self.att_weight22)
att_board[:, :num_type1, num_type1:, :] = torch.matmul(
att_map[:, :num_type1, num_type1:, :], self.att_weight12)
att_board[:, num_type1:, :num_type1, :] = torch.matmul(
att_map[:, num_type1:, :num_type1, :], self.att_weight12)
att_map = att_board
# apply temperature
att_map = att_map / self.temp
att_map = F.softmax(att_map, dim=-2)
return att_map
def _project(self, x, att_map):
x1 = self.proj_with_att(torch.matmul(att_map.squeeze(-1), x))
x2 = self.proj_without_att(x)
return x1 + x2
def _project_master(self, x, master, att_map):
x1 = self.proj_with_attM(torch.matmul(
att_map.squeeze(-1).unsqueeze(1), x))
x2 = self.proj_without_attM(master)
return x1 + x2
def _apply_BN(self, x):
org_size = x.size()
x = x.view(-1, org_size[-1])
x = self.bn(x)
x = x.view(org_size)
return x
def _init_new_params(self, *size):
out = nn.Parameter(torch.FloatTensor(*size))
nn.init.xavier_normal_(out)
return out
class GraphPool(nn.Module):
def __init__(self, k: float, in_dim: int, p: Union[float, int]):
super().__init__()
self.k = k
self.sigmoid = nn.Sigmoid()
self.proj = nn.Linear(in_dim, 1)
self.drop = nn.Dropout(p=p) if p > 0 else nn.Identity()
self.in_dim = in_dim
def forward(self, h):
Z = self.drop(h)
weights = self.proj(Z)
scores = self.sigmoid(weights)
new_h = self.top_k_graph(scores, h, self.k)
return new_h
def top_k_graph(self, scores, h, k):
"""
args
=====
scores: attention-based weights (#bs, #node, 1)
h: graph data (#bs, #node, #dim)
k: ratio of remaining nodes, (float)
returns
=====
h: graph pool applied data (#bs, #node', #dim)
"""
_, n_nodes, n_feat = h.size()
n_nodes = max(int(n_nodes * k), 1)
_, idx = torch.topk(scores, n_nodes, dim=1)
idx = idx.expand(-1, -1, n_feat)
h = h * scores
h = torch.gather(h, 1, idx)
return h
class Residual_block(nn.Module):
def __init__(self, nb_filts, first=False):
super().__init__()
self.first = first
if not self.first:
self.bn1 = nn.BatchNorm2d(num_features=nb_filts[0])
self.conv1 = nn.Conv2d(in_channels=nb_filts[0],
out_channels=nb_filts[1],
kernel_size=(2, 3),
padding=(1, 1),
stride=1)
self.selu = nn.SELU(inplace=True)
self.bn2 = nn.BatchNorm2d(num_features=nb_filts[1])
self.conv2 = nn.Conv2d(in_channels=nb_filts[1],
out_channels=nb_filts[1],
kernel_size=(2, 3),
padding=(0, 1),
stride=1)
if nb_filts[0] != nb_filts[1]:
self.downsample = True
self.conv_downsample = nn.Conv2d(in_channels=nb_filts[0],
out_channels=nb_filts[1],
padding=(0, 1),
kernel_size=(1, 3),
stride=1)
else:
self.downsample = False
def forward(self, x):
identity = x
if not self.first:
out = self.bn1(x)
out = self.selu(out)
else:
out = x
# print('out',out.shape)
out = self.conv1(x)
# print('aft conv1 out',out.shape)
out = self.bn2(out)
out = self.selu(out)
# print('out',out.shape)
out = self.conv2(out)
# print('conv2 out',out.shape)
if self.downsample:
identity = self.conv_downsample(identity)
out += identity
# out = self.mp(out)
return out
class Residual_block_aasist(nn.Module):
def __init__(self, nb_filts, first=False):
super().__init__()
self.first = first
if not self.first:
self.bn1 = nn.BatchNorm2d(num_features=nb_filts[0])
self.conv1 = nn.Conv2d(in_channels=nb_filts[0],
out_channels=nb_filts[1],
kernel_size=(2, 3),
padding=(1, 1),
stride=1)
self.selu = nn.SELU(inplace=True)
self.bn2 = nn.BatchNorm2d(num_features=nb_filts[1])
self.conv2 = nn.Conv2d(in_channels=nb_filts[1],
out_channels=nb_filts[1],
kernel_size=(2, 3),
padding=(0, 1),
stride=1)
if nb_filts[0] != nb_filts[1]:
self.downsample = True
self.conv_downsample = nn.Conv2d(in_channels=nb_filts[0],
out_channels=nb_filts[1],
padding=(0, 1),
kernel_size=(1, 3),
stride=1)
else:
self.downsample = False
self.mp = nn.MaxPool2d((1, 3))
def forward(self, x):
identity = x
if not self.first:
out = self.bn1(x)
out = self.selu(out)
else:
out = x
out = self.conv1(x)
# print('aft conv1 out',out.shape)
out = self.bn2(out)
out = self.selu(out)
# print('out',out.shape)
out = self.conv2(out)
# print('conv2 out',out.shape)
if self.downsample:
identity = self.conv_downsample(identity)
out += identity
out = self.mp(out)
return out
class Model(nn.Module):
def __init__(self, args, device):
super().__init__()
self.device = device
# AASIST parameters
filts = [128, [1, 32], [32, 32], [32, 64], [64, 64]]
gat_dims = [64, 32]
pool_ratios = [0.5, 0.5, 0.5, 0.5]
temperatures = [2.0, 2.0, 100.0, 100.0]
####
# create network wav2vec 2.0
####
self.ssl_model = SSLModel(self.device)
self.LL = nn.Linear(self.ssl_model.out_dim, 128)
self.first_bn = nn.BatchNorm2d(num_features=1)
self.first_bn1 = nn.BatchNorm2d(num_features=64)
self.drop = nn.Dropout(0.5, inplace=True)
self.drop_way = nn.Dropout(0.2, inplace=True)
self.selu = nn.SELU(inplace=True)
# RawNet2 encoder
self.encoder = nn.Sequential(
nn.Sequential(Residual_block(nb_filts=filts[1], first=True)),
nn.Sequential(Residual_block(nb_filts=filts[2])),
nn.Sequential(Residual_block(nb_filts=filts[3])),
nn.Sequential(Residual_block(nb_filts=filts[4])),
nn.Sequential(Residual_block(nb_filts=filts[4])),
nn.Sequential(Residual_block(nb_filts=filts[4])))
self.attention = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=(1, 1)),
nn.SELU(inplace=True),
nn.BatchNorm2d(128),
nn.Conv2d(128, 64, kernel_size=(1, 1)),
)
# position encoding
self.pos_S = nn.Parameter(torch.randn(1, 42, filts[-1][-1]))
self.master1 = nn.Parameter(torch.randn(1, 1, gat_dims[0]))
self.master2 = nn.Parameter(torch.randn(1, 1, gat_dims[0]))
# Graph module
self.GAT_layer_S = GraphAttentionLayer(filts[-1][-1],
gat_dims[0],
temperature=temperatures[0])
self.GAT_layer_T = GraphAttentionLayer(filts[-1][-1],
gat_dims[0],
temperature=temperatures[1])
# HS-GAL layer
self.HtrgGAT_layer_ST11 = HtrgGraphAttentionLayer(
gat_dims[0], gat_dims[1], temperature=temperatures[2])
self.HtrgGAT_layer_ST12 = HtrgGraphAttentionLayer(
gat_dims[1], gat_dims[1], temperature=temperatures[2])
self.HtrgGAT_layer_ST21 = HtrgGraphAttentionLayer(
gat_dims[0], gat_dims[1], temperature=temperatures[2])
self.HtrgGAT_layer_ST22 = HtrgGraphAttentionLayer(
gat_dims[1], gat_dims[1], temperature=temperatures[2])
# Graph pooling layers
self.pool_S = GraphPool(pool_ratios[0], gat_dims[0], 0.3)
self.pool_T = GraphPool(pool_ratios[1], gat_dims[0], 0.3)
self.pool_hS1 = GraphPool(pool_ratios[2], gat_dims[1], 0.3)
self.pool_hT1 = GraphPool(pool_ratios[2], gat_dims[1], 0.3)
self.pool_hS2 = GraphPool(pool_ratios[2], gat_dims[1], 0.3)
self.pool_hT2 = GraphPool(pool_ratios[2], gat_dims[1], 0.3)
self.out_layer = nn.Linear(5 * gat_dims[1], 2)
def forward(self, x):
# -------pre-trained Wav2vec model fine tunning ------------------------##
x_ssl_feat = self.ssl_model.extract_feat(x.squeeze(-1))
x = self.LL(x_ssl_feat) # (bs,frame_number,feat_out_dim)
# post-processing on front-end features
x = x.transpose(1, 2) # (bs,feat_out_dim,frame_number)
x = x.unsqueeze(dim=1) # add channel
x = F.max_pool2d(x, (3, 3))
x = self.first_bn(x)
x = self.selu(x)
# RawNet2-based encoder
x = self.encoder(x)
x = self.first_bn1(x)
x = self.selu(x)
w = self.attention(x)
# ------------SA for spectral feature-------------#
w1 = F.softmax(w, dim=-1)
m = torch.sum(x * w1, dim=-1)
e_S = m.transpose(1, 2) + self.pos_S
# graph module layer
gat_S = self.GAT_layer_S(e_S)
out_S = self.pool_S(gat_S) # (#bs, #node, #dim)
# ------------SA for temporal feature-------------#
w2 = F.softmax(w, dim=-2)
m1 = torch.sum(x * w2, dim=-2)
e_T = m1.transpose(1, 2)
# graph module layer
gat_T = self.GAT_layer_T(e_T)
out_T = self.pool_T(gat_T)
# learnable master node
master1 = self.master1.expand(x.size(0), -1, -1)
master2 = self.master2.expand(x.size(0), -1, -1)
# inference 1
out_T1, out_S1, master1 = self.HtrgGAT_layer_ST11(
out_T, out_S, master=self.master1)
out_S1 = self.pool_hS1(out_S1)
out_T1 = self.pool_hT1(out_T1)
out_T_aug, out_S_aug, master_aug = self.HtrgGAT_layer_ST12(
out_T1, out_S1, master=master1)
out_T1 = out_T1 + out_T_aug
out_S1 = out_S1 + out_S_aug
master1 = master1 + master_aug
# inference 2
out_T2, out_S2, master2 = self.HtrgGAT_layer_ST21(
out_T, out_S, master=self.master2)
out_S2 = self.pool_hS2(out_S2)
out_T2 = self.pool_hT2(out_T2)
out_T_aug, out_S_aug, master_aug = self.HtrgGAT_layer_ST22(
out_T2, out_S2, master=master2)
out_T2 = out_T2 + out_T_aug
out_S2 = out_S2 + out_S_aug
master2 = master2 + master_aug
out_T1 = self.drop_way(out_T1)
out_T2 = self.drop_way(out_T2)
out_S1 = self.drop_way(out_S1)
out_S2 = self.drop_way(out_S2)
master1 = self.drop_way(master1)
master2 = self.drop_way(master2)
out_T = torch.max(out_T1, out_T2)
out_S = torch.max(out_S1, out_S2)
master = torch.max(master1, master2)
# Readout operation
T_max, _ = torch.max(torch.abs(out_T), dim=1)
T_avg = torch.mean(out_T, dim=1)
S_max, _ = torch.max(torch.abs(out_S), dim=1)
S_avg = torch.mean(out_S, dim=1)
last_hidden = torch.cat(
[T_max, T_avg, S_max, S_avg, master.squeeze(1)], dim=1)
last_hidden = self.drop(last_hidden)
output = self.out_layer(last_hidden)
return output
class CONV(nn.Module):
@staticmethod
def to_mel(hz):
return 2595 * np.log10(1 + hz / 700)
@staticmethod
def to_hz(mel):
return 700 * (10**(mel / 2595) - 1)
def __init__(self,
out_channels,
kernel_size,
sample_rate=16000,
in_channels=1,
stride=1,
padding=0,
dilation=1,
bias=False,
groups=1,
mask=False):
super().__init__()
if in_channels != 1:
msg = "SincConv only support one input channel (here, in_channels = {%i})" % (
in_channels)
raise ValueError(msg)
self.out_channels = out_channels
self.kernel_size = kernel_size
self.sample_rate = sample_rate
# Forcing the filters to be odd (i.e, perfectly symmetrics)
if kernel_size % 2 == 0:
self.kernel_size = self.kernel_size + 1
self.stride = stride
self.padding = padding
self.dilation = dilation
self.mask = mask
if bias:
raise ValueError('SincConv does not support bias.')
if groups > 1:
raise ValueError('SincConv does not support groups.')
NFFT = 512
f = int(self.sample_rate / 2) * np.linspace(0, 1, int(NFFT / 2) + 1)
fmel = self.to_mel(f)
fmelmax = np.max(fmel)
fmelmin = np.min(fmel)
filbandwidthsmel = np.linspace(fmelmin, fmelmax, self.out_channels + 1)
filbandwidthsf = self.to_hz(filbandwidthsmel)
self.mel = filbandwidthsf
self.hsupp = torch.arange(-(self.kernel_size - 1) / 2,
(self.kernel_size - 1) / 2 + 1)
self.band_pass = torch.zeros(self.out_channels, self.kernel_size)
for i in range(len(self.mel) - 1):
fmin = self.mel[i]
fmax = self.mel[i + 1]
hHigh = (2*fmax/self.sample_rate) * \
np.sinc(2*fmax*self.hsupp/self.sample_rate)
hLow = (2*fmin/self.sample_rate) * \
np.sinc(2*fmin*self.hsupp/self.sample_rate)
hideal = hHigh - hLow
self.band_pass[i, :] = Tensor(np.hamming(
self.kernel_size)) * Tensor(hideal)
def forward(self, x, mask=False):
band_pass_filter = self.band_pass.clone().to(x.device)
if mask:
A = np.random.uniform(0, 20)
A = int(A)
A0 = random.randint(0, band_pass_filter.shape[0] - A)
band_pass_filter[A0:A0 + A, :] = 0
else:
band_pass_filter = band_pass_filter
self.filters = (band_pass_filter).view(self.out_channels, 1,
self.kernel_size)
return F.conv1d(x,
self.filters,
stride=self.stride,
padding=self.padding,
dilation=self.dilation,
bias=None,
groups=1)
class AASIST_Model(nn.Module):
def __init__(self, args, device):
super().__init__()
filts = [70, [1, 32], [32, 32], [32, 64], [64, 64]]
gat_dims = [64, 32]
pool_ratios =[0.5, 0.7, 0.5, 0.5]
temperatures =[2.0, 2.0, 100.0, 100.0]
self.conv_time = CONV(out_channels=filts[0],
kernel_size=128,
in_channels=1)
self.first_bn = nn.BatchNorm2d(num_features=1)
self.drop = nn.Dropout(0.5, inplace=True)
self.drop_way = nn.Dropout(0.2, inplace=True)
self.selu = nn.SELU(inplace=True)
self.encoder = nn.Sequential(
nn.Sequential(Residual_block_aasist(nb_filts=filts[1], first=True)),
nn.Sequential(Residual_block_aasist(nb_filts=filts[2])),
nn.Sequential(Residual_block_aasist(nb_filts=filts[3])),
nn.Sequential(Residual_block_aasist(nb_filts=filts[4])),
nn.Sequential(Residual_block_aasist(nb_filts=filts[4])),
nn.Sequential(Residual_block_aasist(nb_filts=filts[4])))
self.pos_S = nn.Parameter(torch.randn(1, 23, filts[-1][-1]))
self.master1 = nn.Parameter(torch.randn(1, 1, gat_dims[0]))
self.master2 = nn.Parameter(torch.randn(1, 1, gat_dims[0]))
self.GAT_layer_S = GraphAttentionLayer(filts[-1][-1],
gat_dims[0],
temperature=temperatures[0])
self.GAT_layer_T = GraphAttentionLayer(filts[-1][-1],
gat_dims[0],
temperature=temperatures[1])
self.HtrgGAT_layer_ST11 = HtrgGraphAttentionLayer(
gat_dims[0], gat_dims[1], temperature=temperatures[2])
self.HtrgGAT_layer_ST12 = HtrgGraphAttentionLayer(
gat_dims[1], gat_dims[1], temperature=temperatures[2])
self.HtrgGAT_layer_ST21 = HtrgGraphAttentionLayer(
gat_dims[0], gat_dims[1], temperature=temperatures[2])
self.HtrgGAT_layer_ST22 = HtrgGraphAttentionLayer(
gat_dims[1], gat_dims[1], temperature=temperatures[2])
self.pool_S = GraphPool(pool_ratios[0], gat_dims[0], 0.3)
self.pool_T = GraphPool(pool_ratios[1], gat_dims[0], 0.3)
self.pool_hS1 = GraphPool(pool_ratios[2], gat_dims[1], 0.3)
self.pool_hT1 = GraphPool(pool_ratios[2], gat_dims[1], 0.3)
self.pool_hS2 = GraphPool(pool_ratios[2], gat_dims[1], 0.3)
self.pool_hT2 = GraphPool(pool_ratios[2], gat_dims[1], 0.3)
self.out_layer = nn.Linear(5 * gat_dims[1], 2)
def forward(self, x, Freq_aug=False):
x = x.unsqueeze(1)
x = self.conv_time(x, mask=Freq_aug)
x = x.unsqueeze(dim=1)
x = F.max_pool2d(torch.abs(x), (3, 3))
x = self.first_bn(x)
x = self.selu(x)
# get embeddings using encoder
# (#bs, #filt, #spec, #seq)
e = self.encoder(x)
# spectral GAT (GAT-S)
e_S, _ = torch.max(torch.abs(e), dim=3) # max along time
e_S = e_S.transpose(1, 2) + self.pos_S
gat_S = self.GAT_layer_S(e_S)
out_S = self.pool_S(gat_S) # (#bs, #node, #dim)
# temporal GAT (GAT-T)
e_T, _ = torch.max(torch.abs(e), dim=2) # max along freq
e_T = e_T.transpose(1, 2)
gat_T = self.GAT_layer_T(e_T)
out_T = self.pool_T(gat_T)
# learnable master node
master1 = self.master1.expand(x.size(0), -1, -1)
master2 = self.master2.expand(x.size(0), -1, -1)
# inference 1
out_T1, out_S1, master1 = self.HtrgGAT_layer_ST11(
out_T, out_S, master=self.master1)
out_S1 = self.pool_hS1(out_S1)
out_T1 = self.pool_hT1(out_T1)
out_T_aug, out_S_aug, master_aug = self.HtrgGAT_layer_ST12(
out_T1, out_S1, master=master1)
out_T1 = out_T1 + out_T_aug
out_S1 = out_S1 + out_S_aug
master1 = master1 + master_aug
# inference 2
out_T2, out_S2, master2 = self.HtrgGAT_layer_ST21(
out_T, out_S, master=self.master2)
out_S2 = self.pool_hS2(out_S2)
out_T2 = self.pool_hT2(out_T2)
out_T_aug, out_S_aug, master_aug = self.HtrgGAT_layer_ST22(
out_T2, out_S2, master=master2)
out_T2 = out_T2 + out_T_aug
out_S2 = out_S2 + out_S_aug
master2 = master2 + master_aug
out_T1 = self.drop_way(out_T1)
out_T2 = self.drop_way(out_T2)
out_S1 = self.drop_way(out_S1)
out_S2 = self.drop_way(out_S2)
master1 = self.drop_way(master1)
master2 = self.drop_way(master2)
out_T = torch.max(out_T1, out_T2)
out_S = torch.max(out_S1, out_S2)
master = torch.max(master1, master2)
T_max, _ = torch.max(torch.abs(out_T), dim=1)
T_avg = torch.mean(out_T, dim=1)
S_max, _ = torch.max(torch.abs(out_S), dim=1)
S_avg = torch.mean(out_S, dim=1)
last_hidden = torch.cat(
[T_max, T_avg, S_max, S_avg, master.squeeze(1)], dim=1)
last_hidden = self.drop(last_hidden)
output = self.out_layer(last_hidden)
return output
|