armandstrickernlp commited on
Commit
3aa655b
·
1 Parent(s): 53e6f5f

App update

Browse files
Files changed (3) hide show
  1. app.py +120 -65
  2. app_chatbot.py +0 -144
  3. app_draft.py +89 -0
app.py CHANGED
@@ -1,89 +1,144 @@
 
 
1
  from transformers import AutoTokenizer, AutoModelForCausalLM
2
  import torch
3
  import re
4
 
 
 
 
5
 
6
- model_name = 'armandnlp/gpt2-TOD_finetuned_SGD'
7
- tokenizer_TOD = AutoTokenizer.from_pretrained(model_name)
8
- model_TOD = AutoModelForCausalLM.from_pretrained(model_name)
9
-
10
-
11
- def generate_response(prompt):
12
- input_ids = tokenizer_TOD(prompt, return_tensors="pt").input_ids
13
- outputs = model_TOD.generate(input_ids,
14
- do_sample=False,
15
- max_length=1024,
16
- eos_token_id=50262)
17
- return tokenizer_TOD.batch_decode(outputs)[0]
18
-
19
- #<|context|> <|user|> I want to go to the restaurant.<|endofcontext|>
20
-
21
-
22
- import gradio as gr
23
-
24
- iface = gr.Interface(fn=generate_response,
25
- inputs="text",
26
- outputs="text",
27
- title="gpt2-TOD",
28
- examples=[["<|context|> <|user|> I'm super hungry ! I want to go to the restaurant.<|endofcontext|>"],
29
- ["<|context|> <|user|> I want to go to the restaurant. <|system|> What food would you like to eat ? <|user|> Italian sounds good. <|endofcontext|>"]],
30
- description="Passing in a task-oriented dialogue context generates a belief state, actions to take and a response based on those actions",
31
- )
32
 
33
- iface.launch()
34
 
35
- """
 
 
 
 
 
36
 
37
- ## Work in progress
38
- ## https://gradio.app/creating_a_chatbot/
39
- ## make chatbot interface
40
- ## can get input and responses for now
41
- ## would like to add belief state and actions to history response
42
- ## means modifying the history when appending input during next turn
43
- ## ie. keeping only the response and adding <|system|> token
44
 
45
- ckpt = 'armandnlp/gpt2-TOD_finetuned_SGD'
46
- tokenizer = AutoTokenizer.from_pretrained(ckpt)
47
- model = AutoModelForCausalLM.from_pretrained(ckpt)
48
 
49
  def predict(input, history=[]):
50
- # history: list of all token ids
51
- # response: list of tuples of strings corresponding to dialogue turns
52
 
53
- #model input and output with extra formatting
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
  new_user_input_ids = tokenizer.encode(' <|user|> '+input, return_tensors='pt')
55
  context = tokenizer.encode('<|context|>', return_tensors='pt')
56
  endofcontext = tokenizer.encode(' <|endofcontext|>', return_tensors='pt')
57
- model_input = torch.cat([context, torch.LongTensor(history), new_user_input_ids, endofcontext], dim=-1)
 
 
58
  out = model.generate(model_input, max_length=1024, eos_token_id=50262).tolist()[0]
59
 
60
- #history : format for next dialogue turn
61
- history = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
62
- string_out = tokenizer.decode(out)
63
- response_only = string_out.split('<|response|>')[1].replace('<|endofresponse|>', '')
64
- resp_tokenized = tokenizer.encode(' <|system|> '+response_only, return_tensors='pt')
65
- history = torch.cat([history, resp_tokenized], dim=-1).tolist()
66
-
67
-
68
- # history with belief + action
69
- # output with belief + action + response
70
-
71
-
72
- #response: format printed output
73
  turns = tokenizer.decode(history[0])
74
-
75
- #turns = "<|user|> I want to go to the restaurant. <|system|> What food would you like to eat ? <|user|> Italian sounds good. <|system|> Okay then !"
76
- turns = re.split('<\|system\|>|<\|user\|>', turns)[1:]
77
- #print(turns)
78
- response = [(turns[i], turns[i+1]) for i in range(0, len(turns)-1, 2)]
79
- #print(response)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
 
81
- return response, history
82
- #predict("I want to go to the restaurant.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83
 
84
 
85
  import gradio as gr
 
86
  gr.Interface(fn=predict,
87
  inputs=["text", "state"],
88
- outputs=["chatbot", "state"]).launch()
89
- """
 
 
 
 
 
 
 
 
1
+ #tuto : https://gradio.app/creating_a_chatbot/
2
+
3
  from transformers import AutoTokenizer, AutoModelForCausalLM
4
  import torch
5
  import re
6
 
7
+ ckpt = 'armandnlp/gpt2-TOD_finetuned_SGD'
8
+ tokenizer = AutoTokenizer.from_pretrained(ckpt)
9
+ model = AutoModelForCausalLM.from_pretrained(ckpt)
10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
 
12
 
13
+ def format_resp(system_resp):
14
+ # format Belief, Action and Response tags
15
+ system_resp = system_resp.replace('<|belief|>', '*Belief State: ')
16
+ system_resp = system_resp.replace('<|action|>', '*Actions: ')
17
+ system_resp = system_resp.replace('<|response|>', '*System Response: ')
18
+ return system_resp
19
 
 
 
 
 
 
 
 
20
 
 
 
 
21
 
22
  def predict(input, history=[]):
 
 
23
 
24
+ if history != []:
25
+ # model expects only user and system responses, no belief or action sequences
26
+ # therefore we clean up the history first.
27
+
28
+ # history is a list of token ids which represents all the previous states in the conversation
29
+ # ie. tokenied user inputs + tokenized model outputs
30
+ history_str = tokenizer.decode(history[0])
31
+ turns = re.split('<\|system\|>|<\|user\|>', history_str)[1:]
32
+ for i in range(0, len(turns)-1, 2):
33
+ turns[i] = '<|user|>' + turns[i]
34
+ # keep only the response part of each system_out in the history (no belief and action)
35
+ turns[i+1] = '<|system|>' + turns[i+1].split('<|response|>')[1]
36
+ history4input = tokenizer.encode(''.join(turns), return_tensors='pt')
37
+ else:
38
+ history4input = torch.LongTensor(history)
39
+
40
+ # format input for model by concatenating <|context|> + history4input + new_input + <|endofcontext|>
41
  new_user_input_ids = tokenizer.encode(' <|user|> '+input, return_tensors='pt')
42
  context = tokenizer.encode('<|context|>', return_tensors='pt')
43
  endofcontext = tokenizer.encode(' <|endofcontext|>', return_tensors='pt')
44
+ model_input = torch.cat([context, history4input, new_user_input_ids, endofcontext], dim=-1)
45
+
46
+ # generate output
47
  out = model.generate(model_input, max_length=1024, eos_token_id=50262).tolist()[0]
48
 
49
+ # formatting the history
50
+ # leave out endof... tokens
51
+ string_out = tokenizer.decode(out)
52
+ system_out = string_out.split('<|endofcontext|>')[1].replace('<|endofbelief|>', '').replace('<|endofaction|>', '').replace('<|endofresponse|>', '')
53
+ resp_tokenized = tokenizer.encode(' <|system|> '+system_out, return_tensors='pt')
54
+ history = torch.cat([torch.LongTensor(history), new_user_input_ids, resp_tokenized], dim=-1).tolist()
55
+ # history = history + last user input + <|system|> <|belief|> ... <|action|> ... <|response|>...
56
+
57
+ # format responses to print out
58
+ # need to output all of the turns, hence why the history must contain belief + action info
59
+ # even if we have to take it out of the model input
 
 
60
  turns = tokenizer.decode(history[0])
61
+ turns = re.split('<\|system\|>|<\|user\|>', turns)[1:] # list of all the user and system turns until now
62
+ # list of tuples [(user, system), (user, system)...]
63
+ # 1 tuple represents 1 exchange at 1 turn
64
+ # system resp is formatted with function above to make more readable
65
+ resps = [(turns[i], format_resp(turns[i+1])) for i in range(0, len(turns)-1, 2)]
66
+
67
+ return resps, history
68
+
69
+
70
+
71
+ examples = [["I want to book a restaurant for 2 people on Saturday."],
72
+ ["What's the weather in Cambridge today ?"],
73
+ ["I need to find a bus to Boston."],
74
+ ["I want to add an event to my calendar."],
75
+ ["I would like to book a plane ticket to New York."],
76
+ ["I want to find a concert around LA."],
77
+ ["Hi, I'd like to find an apartment in London please."],
78
+ ["Can you find me a hotel room near Seattle please ?"],
79
+ ["I want to watch a film online, a comedy would be nice"],
80
+ ["I want to transfer some money please."],
81
+ ["I want to reserve a movie ticket for tomorrow evening"],
82
+ ["Can you play the song Learning to Fly by Tom Petty ?"],
83
+ ["I need to rent a small car."]
84
+ ]
85
+
86
+ description = """
87
+ This is an interactive window to chat with GPT-2 fine-tuned on the Schema-Guided Dialogues dataset,
88
+ in which we find domains such as travel, weather, media, calendar, banking,
89
+ restaurant booking...
90
+ """
91
 
92
+ article = """
93
+ ### Model Outputs
94
+ This task-oriented diaogue system is trained end-to-end, following the method detailed in
95
+ [SimpleTOD](https://arxiv.org/pdf/2005.00796.pdf), where GPT-2 is trained by casting task-oriented
96
+ dialogue as a seq2seq task.
97
+
98
+ From the dialogue history, composed of the previous user and system responses, the model is trained
99
+ to output the belief state, the action decisions and the system response as a sequence. We show all
100
+ three outputs in this demo : the belief state tracks the user goal (restaurant cuisine : Indian or media
101
+ genre : comedy for ex.), the action decisions show how the system should proceed (restaurants request city
102
+ or media offer title for ex.) and the natural language response provides an output the user can interpret.
103
+
104
+ The model responses are *de-lexicalized* : database values in the training set have been replaced with their
105
+ slot names to make the learning process database agnostic. These slots are meant to later be replaced by actual
106
+ results from a database, using the belief state to issue calls.
107
+
108
+ The model is capable of dealing with multiple domains : a list of possible inputs is provided to get the
109
+ conversation going.
110
+
111
+ ### Dataset
112
+ The SGD dataset ([blogpost](https://ai.googleblog.com/2019/10/introducing-schema-guided-dialogue.html) and
113
+ [article](https://arxiv.org/pdf/1909.05855.pdf)) contains multiple task domains... Here is a list of some
114
+ of the services and their desctipions from the dataset:
115
+
116
+ * **Restaurants** : *A leading provider for restaurant search and reservations*
117
+ * **Weather** : *Check the weather for any place and any date*
118
+ * **Buses** : *Find a bus to take you to the city you want*
119
+ * **Calendar** : *Calendar service to manage personal events and reservations*
120
+ * **Flights** : *Find your next flight*
121
+ * **Events** : *Get tickets for the coolest concerts and sports in your area*
122
+ * **Homes** : *A widely used service for finding apartments and scheduling visits*
123
+ * **Hotels** : *A popular service for searching and reserving rooms in hotels*
124
+ * **Media** : *A leading provider of movies for searching and watching on-demand*
125
+ * **Banks** : *Manage bank accounts and transfer money*
126
+ * **Movies** : *A go-to provider for finding movies, searching for show times and booking tickets*
127
+ * **Music** : *A popular provider of a wide range of music content for searching and listening*
128
+ * **RentalCars** : *Car rental service with extensive coverage of locations and cars*
129
+ """
130
 
131
 
132
  import gradio as gr
133
+
134
  gr.Interface(fn=predict,
135
  inputs=["text", "state"],
136
+ outputs=["chatbot", "state"],
137
+ title="Chatting with multi task-oriented GPT2",
138
+ examples=examples,
139
+ description=description,
140
+ article=article
141
+ ).launch()
142
+
143
+
144
+
app_chatbot.py DELETED
@@ -1,144 +0,0 @@
1
- #tuto : https://gradio.app/creating_a_chatbot/
2
-
3
- from transformers import AutoTokenizer, AutoModelForCausalLM
4
- import torch
5
- import re
6
-
7
- ckpt = 'armandnlp/gpt2-TOD_finetuned_SGD'
8
- tokenizer = AutoTokenizer.from_pretrained(ckpt)
9
- model = AutoModelForCausalLM.from_pretrained(ckpt)
10
-
11
-
12
-
13
- def format_resp(system_resp):
14
- # format Belief, Action and Response tags
15
- system_resp = system_resp.replace('<|belief|>', '*Belief State: ')
16
- system_resp = system_resp.replace('<|action|>', '*Actions: ')
17
- system_resp = system_resp.replace('<|response|>', '*System Response: ')
18
- return system_resp
19
-
20
-
21
-
22
- def predict(input, history=[]):
23
-
24
- if history != []:
25
- # model expects only user and system responses, no belief or action sequences
26
- # therefore we clean up the history first.
27
-
28
- # history is a list of token ids which represents all the previous states in the conversation
29
- # ie. tokenied user inputs + tokenized model outputs
30
- history_str = tokenizer.decode(history[0])
31
- turns = re.split('<\|system\|>|<\|user\|>', history_str)[1:]
32
- for i in range(0, len(turns)-1, 2):
33
- turns[i] = '<|user|>' + turns[i]
34
- # keep only the response part of each system_out in the history (no belief and action)
35
- turns[i+1] = '<|system|>' + turns[i+1].split('<|response|>')[1]
36
- history4input = tokenizer.encode(''.join(turns), return_tensors='pt')
37
- else:
38
- history4input = torch.LongTensor(history)
39
-
40
- # format input for model by concatenating <|context|> + history4input + new_input + <|endofcontext|>
41
- new_user_input_ids = tokenizer.encode(' <|user|> '+input, return_tensors='pt')
42
- context = tokenizer.encode('<|context|>', return_tensors='pt')
43
- endofcontext = tokenizer.encode(' <|endofcontext|>', return_tensors='pt')
44
- model_input = torch.cat([context, history4input, new_user_input_ids, endofcontext], dim=-1)
45
-
46
- # generate output
47
- out = model.generate(model_input, max_length=1024, eos_token_id=50262).tolist()[0]
48
-
49
- # formatting the history
50
- # leave out endof... tokens
51
- string_out = tokenizer.decode(out)
52
- system_out = string_out.split('<|endofcontext|>')[1].replace('<|endofbelief|>', '').replace('<|endofaction|>', '').replace('<|endofresponse|>', '')
53
- resp_tokenized = tokenizer.encode(' <|system|> '+system_out, return_tensors='pt')
54
- history = torch.cat([torch.LongTensor(history), new_user_input_ids, resp_tokenized], dim=-1).tolist()
55
- # history = history + last user input + <|system|> <|belief|> ... <|action|> ... <|response|>...
56
-
57
- # format responses to print out
58
- # need to output all of the turns, hence why the history must contain belief + action info
59
- # even if we have to take it out of the model input
60
- turns = tokenizer.decode(history[0])
61
- turns = re.split('<\|system\|>|<\|user\|>', turns)[1:] # list of all the user and system turns until now
62
- # list of tuples [(user, system), (user, system)...]
63
- # 1 tuple represents 1 exchange at 1 turn
64
- # system resp is formatted with function above to make more readable
65
- resps = [(turns[i], format_resp(turns[i+1])) for i in range(0, len(turns)-1, 2)]
66
-
67
- return resps, history
68
-
69
-
70
-
71
- examples = [["I want to book a restaurant for 2 people on Saturday."],
72
- ["What's the weather in Cambridge today ?"],
73
- ["I need to find a bus to Boston."],
74
- ["I want to add an event to my calendar."],
75
- ["I would like to book a plane ticket to New York."],
76
- ["I want to find a concert around LA."],
77
- ["Hi, I'd like to find an apartment in London please."],
78
- ["Can you find me a hotel room near Seattle please ?"],
79
- ["I want to watch a film online, a comedy would be nice"],
80
- ["I want to transfer some money please."],
81
- ["I want to reserve a movie ticket for tomorrow evening"],
82
- ["Can you play the song Learning to Fly by Tom Petty ?"],
83
- ["I need to rent a small car."]
84
- ]
85
-
86
- description = """
87
- This is an interactive window to chat with GPT-2 fine-tuned on the Schema-Guided Dialogues dataset,
88
- in which we find domains such as travel, weather, media, calendar, banking,
89
- restaurant booking...
90
- """
91
-
92
- article = """
93
- ### Model Outputs
94
- This task-oriented diaogue system is trained end-to-end, following the method detailed in
95
- [SimpleTOD](https://arxiv.org/pdf/2005.00796.pdf), where GPT-2 is trained by casting task-oriented
96
- dialogue as a seq2seq task.
97
-
98
- From the dialogue history, composed of the previous user and system responses, the model is trained
99
- to output the belief state, the action decisions and the system response as a sequence. We show all
100
- three outputs in this demo : the belief state tracks the user goal (restaurant cuisine : Indian or media
101
- genre : comedy for ex.), the action decisions show how the system should proceed (restaurants request city
102
- or media offer title for ex.) and the natural language response provides an output the user can interpret.
103
-
104
- The model responses are *de-lexicalized* : database values in the training set have been replaced with their
105
- slot names to make the learning process database agnostic. These slots are meant to later be replaced by actual
106
- results from a database, using the belief state to issue calls.
107
-
108
- The model is capable of dealing with multiple domains : a list of possible inputs is provided to get the
109
- conversation going.
110
-
111
- ### Dataset
112
- The SGD dataset ([blogpost](https://ai.googleblog.com/2019/10/introducing-schema-guided-dialogue.html) and
113
- [article](https://arxiv.org/pdf/1909.05855.pdf)) contains multiple task domains... Here is a list of some
114
- of the services and their desctipions from the dataset:
115
-
116
- * **Restaurants** : *A leading provider for restaurant search and reservations*
117
- * **Weather** : *Check the weather for any place and any date*
118
- * **Buses** : *Find a bus to take you to the city you want*
119
- * **Calendar** : *Calendar service to manage personal events and reservations*
120
- * **Flights** : *Find your next flight*
121
- * **Events** : *Get tickets for the coolest concerts and sports in your area*
122
- * **Homes** : *A widely used service for finding apartments and scheduling visits*
123
- * **Hotels** : *A popular service for searching and reserving rooms in hotels*
124
- * **Media** : *A leading provider of movies for searching and watching on-demand*
125
- * **Banks** : *Manage bank accounts and transfer money*
126
- * **Movies** : *A go-to provider for finding movies, searching for show times and booking tickets*
127
- * **Music** : *A popular provider of a wide range of music content for searching and listening*
128
- * **RentalCars** : *Car rental service with extensive coverage of locations and cars*
129
- """
130
-
131
-
132
- import gradio as gr
133
-
134
- gr.Interface(fn=predict,
135
- inputs=["text", "state"],
136
- outputs=["chatbot", "state"],
137
- title="Chatting with multi task-oriented GPT2",
138
- examples=examples,
139
- description=description,
140
- article=article
141
- ).launch()
142
-
143
-
144
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app_draft.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoTokenizer, AutoModelForCausalLM
2
+ import torch
3
+ import re
4
+
5
+
6
+ model_name = 'armandnlp/gpt2-TOD_finetuned_SGD'
7
+ tokenizer_TOD = AutoTokenizer.from_pretrained(model_name)
8
+ model_TOD = AutoModelForCausalLM.from_pretrained(model_name)
9
+
10
+
11
+ def generate_response(prompt):
12
+ input_ids = tokenizer_TOD(prompt, return_tensors="pt").input_ids
13
+ outputs = model_TOD.generate(input_ids,
14
+ do_sample=False,
15
+ max_length=1024,
16
+ eos_token_id=50262)
17
+ return tokenizer_TOD.batch_decode(outputs)[0]
18
+
19
+ #<|context|> <|user|> I want to go to the restaurant.<|endofcontext|>
20
+
21
+
22
+ import gradio as gr
23
+
24
+ iface = gr.Interface(fn=generate_response,
25
+ inputs="text",
26
+ outputs="text",
27
+ title="gpt2-TOD",
28
+ examples=[["<|context|> <|user|> I'm super hungry ! I want to go to the restaurant.<|endofcontext|>"],
29
+ ["<|context|> <|user|> I want to go to the restaurant. <|system|> What food would you like to eat ? <|user|> Italian sounds good. <|endofcontext|>"]],
30
+ description="Passing in a task-oriented dialogue context generates a belief state, actions to take and a response based on those actions",
31
+ )
32
+
33
+ iface.launch()
34
+
35
+ """
36
+
37
+ ## Work in progress
38
+ ## https://gradio.app/creating_a_chatbot/
39
+ ## make chatbot interface
40
+ ## can get input and responses for now
41
+ ## would like to add belief state and actions to history response
42
+ ## means modifying the history when appending input during next turn
43
+ ## ie. keeping only the response and adding <|system|> token
44
+
45
+ ckpt = 'armandnlp/gpt2-TOD_finetuned_SGD'
46
+ tokenizer = AutoTokenizer.from_pretrained(ckpt)
47
+ model = AutoModelForCausalLM.from_pretrained(ckpt)
48
+
49
+ def predict(input, history=[]):
50
+ # history: list of all token ids
51
+ # response: list of tuples of strings corresponding to dialogue turns
52
+
53
+ #model input and output with extra formatting
54
+ new_user_input_ids = tokenizer.encode(' <|user|> '+input, return_tensors='pt')
55
+ context = tokenizer.encode('<|context|>', return_tensors='pt')
56
+ endofcontext = tokenizer.encode(' <|endofcontext|>', return_tensors='pt')
57
+ model_input = torch.cat([context, torch.LongTensor(history), new_user_input_ids, endofcontext], dim=-1)
58
+ out = model.generate(model_input, max_length=1024, eos_token_id=50262).tolist()[0]
59
+
60
+ #history : format for next dialogue turn
61
+ history = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
62
+ string_out = tokenizer.decode(out)
63
+ response_only = string_out.split('<|response|>')[1].replace('<|endofresponse|>', '')
64
+ resp_tokenized = tokenizer.encode(' <|system|> '+response_only, return_tensors='pt')
65
+ history = torch.cat([history, resp_tokenized], dim=-1).tolist()
66
+
67
+
68
+ # history with belief + action
69
+ # output with belief + action + response
70
+
71
+
72
+ #response: format printed output
73
+ turns = tokenizer.decode(history[0])
74
+
75
+ #turns = "<|user|> I want to go to the restaurant. <|system|> What food would you like to eat ? <|user|> Italian sounds good. <|system|> Okay then !"
76
+ turns = re.split('<\|system\|>|<\|user\|>', turns)[1:]
77
+ #print(turns)
78
+ response = [(turns[i], turns[i+1]) for i in range(0, len(turns)-1, 2)]
79
+ #print(response)
80
+
81
+ return response, history
82
+ #predict("I want to go to the restaurant.")
83
+
84
+
85
+ import gradio as gr
86
+ gr.Interface(fn=predict,
87
+ inputs=["text", "state"],
88
+ outputs=["chatbot", "state"]).launch()
89
+ """