# Inference Servers One can connect to Hugging Face text generation inference server, gradio servers running h2oGPT, or OpenAI servers. ## Hugging Face Text Generation Inference Server-Client ### Local Install #### **Not Recommended** This is just following the same [local-install](https://github.com/huggingface/text-generation-inference). ```bash curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh source "$HOME/.cargo/env" ``` ```bash PROTOC_ZIP=protoc-21.12-linux-x86_64.zip curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP sudo unzip -o $PROTOC_ZIP -d /usr/local bin/protoc sudo unzip -o $PROTOC_ZIP -d /usr/local 'include/*' rm -f $PROTOC_ZIP ``` ```bash git clone https://github.com/huggingface/text-generation-inference.git cd text-generation-inference ``` Needed to compile on Ubuntu: ```bash sudo apt-get install libssl-dev gcc -y ``` Use `BUILD_EXTENSIONS=False` instead of have GPUs below A100. ```bash conda create -n textgen -y conda activate textgen conda install python=3.10 -y export CUDA_HOME=/usr/local/cuda-11.8 BUILD_EXTENSIONS=True make install # Install repository and HF/transformer fork with CUDA kernels cd server && make install install-flash-attention ``` ```bash NCCL_SHM_DISABLE=1 CUDA_VISIBLE_DEVICES=0 text-generation-launcher --model-id h2oai/h2ogpt-oig-oasst1-512-6_9b --port 8080 --sharded false --trust-remote-code --max-stop-sequences=6 ``` ### Docker Install #### **Recommended** ```bash # https://docs.docker.com/engine/install/ubuntu/ sudo snap remove --purge docker sudo apt-get update sudo apt-get install ca-certificates curl gnupg sudo install -m 0755 -d /etc/apt/keyrings curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /etc/apt/keyrings/docker.gpg sudo chmod a+r /etc/apt/keyrings/docker.gpg echo "deb [arch="$(dpkg --print-architecture)" signed-by=/etc/apt/keyrings/docker.gpg] https://download.docker.com/linux/ubuntu \ "$(. /etc/os-release && echo "$VERSION_CODENAME")" stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null sudo apt-get update sudo apt-get install docker-ce docker-ce-cli containerd.io docker-buildx-plugin docker-compose-plugin sudo apt-get install -y nvidia-container-toolkit sudo docker run hello-world # https://docs.docker.com/engine/install/linux-postinstall/ sudo groupadd docker sudo usermod -aG docker $USER newgrp docker docker run hello-world sudo nvidia-ctk runtime configure sudo systemctl stop docker sudo systemctl start docker ``` Reboot or run: ```bash newgrp docker ``` in order to log in to this user. Then for falcon 7b run: ```bash export CUDA_VISIBLE_DEVICES=0 docker run --gpus device=0 --shm-size 2g -e CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES -e TRANSFORMERS_CACHE="/.cache/" -p 6112:80 -v $HOME/.cache:/.cache/ -v $HOME/.cache/huggingface/hub/:/data ghcr.io/huggingface/text-generation-inference:0.8.2 --model-id h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v2 --max-input-length 2048 --max-total-tokens 4096 --sharded=false --disable-custom-kernels --trust-remote-code --max-stop-sequences=6 ``` or Pythia 12b: ```bash export CUDA_VISIBLE_DEVICES=0,1,2,3 docker run --gpus all --shm-size 2g -e CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES -e TRANSFORMERS_CACHE="/.cache/" -p 6112:80 -v $HOME/.cache:/.cache/ -v $HOME/.cache/huggingface/hub/:/data ghcr.io/huggingface/text-generation-inference:0.8.2 --model-id h2oai/h2ogpt-oasst1-512-12b --max-input-length 2048 --max-total-tokens 4096 --sharded=true --num-shard=4 --disable-custom-kernels --trust-remote-code --max-stop-sequences=6 ``` or for 20B NeoX on 4 GPUs: ```bash export CUDA_VISIBLE_DEVICES=0,1,2,3 docker run --gpus all --shm-size 2g -e CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES -e TRANSFORMERS_CACHE="/.cache/" -p 6112:80 -v $HOME/.cache:/.cache/ -v $HOME/.cache/huggingface/hub/:/data ghcr.io/huggingface/text-generation-inference:0.8.2 --model-id h2oai/h2ogpt-oasst1-512-20b --max-input-length 2048 --max-total-tokens 4096 --sharded=true --num-shard=4 --disable-custom-kernels --trust-remote-code --max-stop-sequences=6 ``` or for Falcon 40B on 2 GPUs and some HF token `$HUGGING_FACE_HUB_TOKEN`: ```bash export CUDA_VISIBLE_DEVICES=1,2 sudo docker run --gpus all --shm-size 1g -e CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES -e HUGGING_FACE_HUB_TOKEN=$HUGGING_FACE_HUB_TOKEN -e TRANSFORMERS_CACHE="/.cache/" -p 6112:80 -v $HOME/.cache:/.cache/ -v $HOME/.cache/huggingface/hub/:/data ghcr.io/huggingface/text-generation-inference:0.8.2 --model-id h2oai/h2ogpt-gm-oasst1-en-2048-falcon-40b-v2 --max-input-length 2048 --max-total-tokens 4096 --max-stop-sequences 6 --sharded true --num-shard 2 ``` Or for MosaicML Chat 30b (careful with docker GPU and TGI version, and one can increase the token counts since has 8k input context): ```bash docker run -d --gpus '"device=0,3"' --shm-size 2g -e HUGGING_FACE_HUB_TOKEN=$HUGGING_FACE_HUB_TOKEN -e TRANSFORMERS_CACHE="/.cache/" -p 6112:80 -v $HOME/.cache:/.cache/ -v $HOME/.cache/huggingface/hub/:/data ghcr.io/huggingface/text-generation-inference:0.9.1 --model-id mosaicml/mpt-30b-chat --max-batch-prefill-tokens=2048 --max-input-length 2048 --max-total-tokens 4096 --max-stop-sequences 6 --trust-remote-code ``` or for Falcon 40B instruct: ```bash export CUDA_VISIBLE_DEVICES=6,7 docker run -d --gpus all --shm-size 1g -e CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES -e HUGGING_FACE_HUB_TOKEN=$HUGGING_FACE_HUB_TOKEN -e TRANSFORMERS_CACHE="/.cache/" -p 6112:80 -v $HOME/.cache:/.cache/ -v $HOME/.cache/huggingface/hub/:/data ghcr.io/huggingface/text-generation-inference:0.8.2 --model-id tiiuae/falcon-40b-instruct --max-input-length 2048 --max-total-tokens 4096 --max-stop-sequences 6 --sharded true --num-shard 2 ``` or for Vicuna33b: ```bash export CUDA_VISIBLE_DEVICES=4,5 docker run -d --gpus all --shm-size 2g -e CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES -e TRANSFORMERS_CACHE="/.cache/" -p 6112:80 -v $HOME/.cache:/.cache/ -v $HOME/.cache/huggingface/hub/:/data ghcr.io/huggingface/text-generation-inference:0.8.2 --model-id lmsys/vicuna-33b-v1.3 --max-input-length 2048 --max-total-tokens 4096 --sharded true --num-shard 2 ``` If one changes the port `6112` for each docker run command, any number of inference servers with any models can be added. On isolated system, one might want to script start-up, and start with a kill sequence like this if one is using ngrok to map a local system to some domain name: ```bash pkill -f generate --signal 9 pkill -f gradio --signal 9 pkill -f ngrok --signal 9 pkill -f text-generation-server --signal 9 sudo killall -9 generate sudo killall -9 ngrok sudo killall -9 text-generation-server docker kill $(docker ps -q) ``` then create a run script to launch all dockers or other gradio servers, sleep a bit, and then launch all generates to connect to any TGI or other servers. ### Testing Python test: ```python from text_generation import Client client = Client("http://127.0.0.1:6112") print(client.generate("What is Deep Learning?", max_new_tokens=17).generated_text) text = "" for response in client.generate_stream("What is Deep Learning?", max_new_tokens=17): if not response.token.special: text += response.token.text print(text) ``` Curl Test: ```bash curl 127.0.0.1:6112/generate -X POST -d '{"inputs":"<|prompt|>What is Deep Learning?<|endoftext|><|answer|>","parameters":{"max_new_tokens": 512, "truncate": 1024, "do_sample": true, "temperature": 0.1, "repetition_penalty": 1.2}}' -H 'Content-Type: application/json' --user "user:bhx5xmu6UVX4" ``` ### Integration with h2oGPT For example, server at IP `192.168.1.46` on docker for 4 GPU system running 12B model sharded across all 4 GPUs: ```bash export CUDA_VISIBLE_DEVICES=0,1,2,3 docker run --gpus all --shm-size 2g -e CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES -e TRANSFORMERS_CACHE="/.cache/" -p 6112:80 -v $HOME/.cache:/.cache/ -v $HOME/.cache/huggingface/hub/:/data ghcr.io/huggingface/text-generation-inference:0.8.2 --model-id h2oai/h2ogpt-oasst1-512-12b --max-input-length 2048 --max-total-tokens 4096 --sharded=true --num-shard=4 --disable-custom-kernels --trust-remote-code --max-stop-sequences=6 ``` then generate in h2oGPT environment: ```bash SAVE_DIR=./save/ python generate.py --inference_server="http://192.168.1.46:6112" --base_model=h2oai/h2ogpt-oasst1-512-12b ``` One can pass, e.g., `--max_max_new_tokens=2048 --max_new_tokens=512` to generate.py to control tokens, along with `--max-batch-prefill-tokens=2048 --max-input-length 2048 --max-total-tokens 4096 --max-stop-sequences 6 --trust-remote-code` for TGI server to match. ## Gradio Inference Server-Client You can use your own server for some model supported by the server's system specs, e.g.: ```bash SAVE_DIR=./save/ python generate.py --base_model=h2oai/h2ogpt-oasst1-512-12b ``` In any case, for your own server or some other server using h2oGPT gradio server, the client should specify the gradio endpoint as inference server. E.g. if server is at `http://192.168.0.10:7680`, then ```bash python generate.py --inference_server="http://192.168.0.10:7680" --base_model=h2oai/h2ogpt-oasst1-falcon-40b ``` One can also use gradio live link like `https://6a8d4035f1c8858731.gradio.live` or some ngrok or other mapping/redirect to `https://` address. One must specify the model used at the endpoint so the prompt type is handled. This assumes that base model is specified in `prompter.py::prompt_type_to_model_name`. Otherwise, one should pass `--prompt_type` as well, like: ```bash python generate.py --inference_server="http://192.168.0.10:7680" --base_model=foo_model --prompt_type=wizard2 ``` If even `prompt_type` is not listed in `enums.py::PromptType` then one can pass `--prompt_dict` like: ```bash python generate.py --inference_server="http://192.168.0.10:7680" --base_model=foo_model --prompt_type=custom --prompt_dict="{'PreInput': None,'PreInstruct': '', 'PreResponse': ':', 'botstr': ':', 'chat_sep': '\n', 'humanstr': ':', 'promptA': ': ', 'promptB': ': ', 'terminate_response': [':', ':']}" ``` which is just an example for the `human_bot` prompt type. ## OpenAI Inference Server-Client If you have an OpenAI key and set an ENV `OPENAI_API_KEY`, then you can access OpenAI models via gradio by running: ```bash OPENAI_API_KEY= python generate.py --inference_server="openai_chat" --base_model=gpt-3.5-turbo --h2ocolors=False --langchain_mode=MyData ``` where `` should be replaced by your OpenAI key that probably starts with `sk-`. OpenAI is **not** recommended for private document question-answer, but it can be a good reference for testing purposes or when privacy is not required. ## vLLM Inference Server-Client Create separate environment ```bash conda create -n vllm -y conda activate vllm conda install python=3.10 -y ``` then ensure openai global key/base are not changed in race if used together: ```bash cd $HOME/miniconda3/envs/h2ogpt/lib/python3.10/site-packages/ rm -rf openai_vllm* cp -a openai openai_vllm cp -a openai-0.27.8.dist-info openai_vllm-0.27.8.dist-info find openai_vllm -name '*.py' | xargs sed -i 's/from openai /from openai_vllm /g' find openai_vllm -name '*.py' | xargs sed -i 's/openai\./openai_vllm./g' find openai_vllm -name '*.py' | xargs sed -i 's/from openai\./from openai_vllm./g' find openai_vllm -name '*.py' | xargs sed -i 's/import openai/import openai_vllm/g' ``` Assuming torch was installed with CUDA 11.8, and you have installed cuda locally in `/usr/local/cuda-11.8`, then can start in OpenAI compliant mode. E.g. for LLaMa 65B on 2 GPUs: ```bash CUDA_HOME=/usr/local/cuda-11.8 pip install vllm ray export NCCL_IGNORE_DISABLED_P2P=1 export CUDA_VISIBLE_DEVICESs=0,1 python -m vllm.entrypoints.openai.api_server --port=5000 --host=0.0.0.0 --model h2oai/h2ogpt-research-oasst1-llama-65b --tokenizer=hf-internal-testing/llama-tokenizer --tensor-parallel-size=2 --seed 1234 ``` which takes about 3 minutes until Uvicorn starts entirely so endpoint is fully ready, when one sees: ```text INFO 07-15 02:56:41 llm_engine.py:131] # GPU blocks: 496, # CPU blocks: 204 INFO 07-15 02:56:43 tokenizer.py:28] For some LLaMA-based models, initializing the fast tokenizer may take a long time. To eliminate the initialization time, consider using 'hf-internal-testing/llama-tokenizer' instead of the original tokenizer. INFO: Started server process [2442339] INFO: Waiting for application startup. INFO: Application startup complete. INFO: Uvicorn running on http://0.0.0.0:5000 (Press CTRL+C to quit) ``` Open port if want to allow access outside the server: ```bash sudo ufw allow 5000 ``` To run in interactive mode, if don't have P2P (check `nvidia-smi topo -m`) then set this env: ```bash export NCCL_IGNORE_DISABLED_P2P=1 ``` Then in python ```python from vllm import LLM llm = LLM(model='h2oai/h2ogpt-research-oasst1-llama-65b', tokenizer='hf-internal-testing/llama-tokenizer', tensor_parallel_size=2) output = llm.generate("San Franciso is a") ``` See [vLLM docs](https://vllm.readthedocs.io/en/latest/getting_started/quickstart.html). ```text (h2ollm) ubuntu@cloudvm:~/h2ogpt$ python -m vllm.entrypoints.openai.api_server --help usage: api_server.py [-h] [--host HOST] [--port PORT] [--allow-credentials] [--allowed-origins ALLOWED_ORIGINS] [--allowed-methods ALLOWED_METHODS] [--allowed-headers ALLOWED_HEADERS] [--served-model-name SERVED_MODEL_NAME] [--model MODEL] [--tokenizer TOKENIZER] [--tokenizer-mode {auto,slow}] [--download-dir DOWNLOAD_DIR] [--use-np-weights] [--use-dummy-weights] [--dtype {auto,half,bfloat16,float}] [--worker-use-ray] [--pipeline-parallel-size PIPELINE_PARALLEL_SIZE] [--tensor-parallel-size TENSOR_PARALLEL_SIZE] [--block-size {8,16,32}] [--seed SEED] [--swap-space SWAP_SPACE] [--gpu-memory-utilization GPU_MEMORY_UTILIZATION] [--max-num-batched-tokens MAX_NUM_BATCHED_TOKENS] [--max-num-seqs MAX_NUM_SEQS] [--disable-log-stats] [--engine-use-ray] [--disable-log-requests] vLLM OpenAI-Compatible RESTful API server. options: -h, --help show this help message and exit --host HOST host name --port PORT port number --allow-credentials allow credentials --allowed-origins ALLOWED_ORIGINS allowed origins --allowed-methods ALLOWED_METHODS allowed methods --allowed-headers ALLOWED_HEADERS allowed headers --served-model-name SERVED_MODEL_NAME The model name used in the API. If not specified, the model name will be the same as the huggingface name. --model MODEL name or path of the huggingface model to use --tokenizer TOKENIZER name or path of the huggingface tokenizer to use --tokenizer-mode {auto,slow} tokenizer mode. "auto" will use the fast tokenizer if available, and "slow" will always use the slow tokenizer. --download-dir DOWNLOAD_DIR directory to download and load the weights, default to the default cache dir of huggingface --use-np-weights save a numpy copy of model weights for faster loading. This can increase the disk usage by up to 2x. --use-dummy-weights use dummy values for model weights --dtype {auto,half,bfloat16,float} data type for model weights and activations. The "auto" option will use FP16 precision for FP32 and FP16 models, and BF16 precision for BF16 models. --worker-use-ray use Ray for distributed serving, will be automatically set when using more than 1 GPU --pipeline-parallel-size PIPELINE_PARALLEL_SIZE, -pp PIPELINE_PARALLEL_SIZE number of pipeline stages --tensor-parallel-size TENSOR_PARALLEL_SIZE, -tp TENSOR_PARALLEL_SIZE number of tensor parallel replicas --block-size {8,16,32} token block size --seed SEED random seed --swap-space SWAP_SPACE CPU swap space size (GiB) per GPU --gpu-memory-utilization GPU_MEMORY_UTILIZATION the percentage of GPU memory to be used forthe model executor --max-num-batched-tokens MAX_NUM_BATCHED_TOKENS maximum number of batched tokens per iteration --max-num-seqs MAX_NUM_SEQS maximum number of sequences per iteration --disable-log-stats disable logging statistics --engine-use-ray use Ray to start the LLM engine in a separate process as the server process. --disable-log-requests disable logging requests ``` CURL test: ```bash curl http://localhost:5000/v1/completions \ -H "Content-Type: application/json" \ -d '{ "model": "h2oai/h2ogpt-research-oasst1-llama-65b", "prompt": "San Francisco is a", "max_tokens": 7, "temperature": 0 }' ``` If started OpenAI-compliant server, then run h2oGPT: ```bash python generate.py --inference_server="vllm:0.0.0.0:5000" --base_model=h2oai/h2ogpt-oasst1-falcon-40b --langchain_mode=MyData ``` Note: `vllm_chat` ChatCompletion is not supported by vLLM project. Note vLLM has bug in stopping sequence that is does not return the last token, unlike OpenAI, so a hack is in place for `prompt_type=human_bot`, and other prompts may need similar hacks. See `fix_text()` in `src/prompter.py`. ## h2oGPT start-up vs. in-app selection When using `generate.py`, specifying the `--base_model` or `--inference_server` on the CLI is not required. One can also add any model and server URL (with optional port) in the **Model** tab at the bottom: ![Add Model](model_add.png) Enter the mode name as the same name one would use for `--base_model` and enter the server url:port as the same url (optional port) one would use for `--inference_server`. Then click `Add new Model, Lora, Server url:port` button. This adds that to the drop-down selection, and then one can load the model by clicking "Load-Unload" model button. For an inference server, the `Load 8-bit`, `Choose Devices`, `LORA`, and `GPU ID` buttons or selections are not applicable. One can also do model comparison by clicking the `Compare Mode` checkbox, and add new models and servers to each left and right models for a view like: ![Model Compare](models_compare.png) ## Locking Models for easy start-up or in-app comparison To avoid specifying model-related settings as independent options, and to disable loading new models, use `--model_lock` like: ```bash python generate.py --model_lock=[{'inference_server':'http://192.168.1.46:6112','base_model':'h2oai/h2ogpt-oasst1-512-12b'}] ``` where for this case the prompt_type for this base_model is in prompter.py, so it doesn't need to be specified. Note that no spaces or other white space is allowed within the double quotes for model_lock due to how CLI arguments are parsed. For two endpoints, one uses (again with no spaces in arg) ```bash python generate.py --model_lock=[{'inference_server':'http://192.168.1.46:6112','base_model':'h2oai/h2ogpt-oasst1-512-12b'},{'inference_server':'http://192.168.1.46:6114','base_model':'h2oai/h2ogpt-oasst1-512-20b'},{'inference_server':'http://192.168.1.46:6113','base_model':'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v2'}] ``` One can have a mix of local models, HF text-generation inference servers, Gradio generation servers, and OpenAI servers, e.g.: ```bash python generate.py --model_lock=[{'inference_server':'http://192.168.1.46:6112','base_model':'h2oai/h2ogpt-oasst1-512-12b'},{'inference_server':'http://192.168.1.46:6114','base_model':'h2oai/h2ogpt-oasst1-512-20b'},{'inference_server':'http://192.168.1.46:6113','base_model':'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v2'},{'inference_server':'http://192.168.0.1:6000','base_model':'TheBloke/Wizard-Vicuna-13B-Uncensored-HF','prompt_type':'instruct_vicuna'},{'inference_server':'http://192.168.0.245:6000','base_model':'h2oai/h2ogpt-oasst1-falcon-40b'},{'inference_server':'http://192.168.1.46:7860','base_model':'h2oai/h2ogpt-oasst1-512-12b'},{'inference_server':'http://192.168.0.1:7000','base_model':'h2oai/h2ogpt-research-oasst1-llama-65b','prompt_type':'human_bot'},{'inference_server':'openai_chat','base_model':'gpt-3.5-turbo'}] --model_lock_columns=4 ``` where the lock columns of 4 makes a grid of chatbots with 4 columns. If you run in bash and need to use an authentication for the Hugging Face text generation inference server, then that can be passed: ```text {'inference_server':'https://server.h2o.ai USER AUTH','base_model':'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v2'} ``` i.e. 4 spaces between each IP, USER, and AUTH. USER should be the user and AUTH be the token. When bringing up `generate.py` with any inference server, one can set `REQUEST_TIMEOUT` ENV to smaller value than default of 60 seconds to get server up faster if one has many inaccessible endpoints you don't mind skipping. E.g. set `REQUEST_TIMEOUT=5`. One can also choose the timeout overall for each chat turn using env `REQUEST_TIMEOUT_FAST` that defaults to 10 seconds. Note: The client API calls for chat APIs (i.e. `instruction` type for `instruction`, `instruction_bot`, `instruction_bot_score`, and similar for `submit` and `retry` types) require managing all chat sessions via API. However, the `nochat` APIs only use the first model in the list of chats or model_lock list. ![Models Lock](models_lock.png) ### System info from gradio server ```python import json from gradio_client import Client ADMIN_PASS = '' HOST = "http://localhost:7860" client = Client(HOST) api_name = '/system_info_dict' res = client.predict(ADMIN_PASS, api_name=api_name) res = json.loads(res) print(res) # e.g. print(res['base_model']) print(res['hash']) ``` where one should set `ADMIN_PASS` to pass set for that instance and change `HOST` to the desired host.