## Triton Inference Server To get optimal performance for inference for h2oGPT models, we will be using the [FastTransformer Backend for Triton](https://github.com/triton-inference-server/fastertransformer_backend/). Make sure to [install Docker](INSTALL-DOCKER.md) first. ### Build Docker image for Triton with FasterTransformer backend: ```bash git clone https://github.com/triton-inference-server/fastertransformer_backend.git cd fastertransformer_backend git clone https://github.com/NVIDIA/FasterTransformer.git export WORKSPACE=$(pwd) export CONTAINER_VERSION=22.12 export TRITON_DOCKER_IMAGE=triton_with_ft:${CONTAINER_VERSION} docker build --rm \ --build-arg TRITON_VERSION=${CONTAINER_VERSION} \ -t ${TRITON_DOCKER_IMAGE} \ -f docker/Dockerfile \ . ``` ### Create model definition files We convert the h2oGPT model from [HF to FT format](https://github.com/NVIDIA/FasterTransformer/pull/569): #### Fetch model from Hugging Face ```bash export MODEL=h2ogpt-oig-oasst1-512-6_9b if [ ! -d ${MODEL} ]; then git lfs clone https://huggingface.co/h2oai/${MODEL} fi ``` If `git lfs` fails, make sure to install it first. For Ubuntu: ```bash sudo apt-get install git-lfs ``` #### Convert to FasterTransformer format ```bash export WORKSPACE=$(pwd) export TRITON_DOCKER_IMAGE=triton_with_ft:${CONTAINER_VERSION} # Go into Docker docker run -it --rm --runtime=nvidia --shm-size=1g \ --ulimit memlock=-1 -v ${WORKSPACE}:${WORKSPACE} \ -e CUDA_VISIBLE_DEVICES=0 \ -e MODEL=${MODEL} \ -e WORKSPACE=${WORKSPACE} \ -w ${WORKSPACE} ${TRITON_DOCKER_IMAGE} bash export PYTHONPATH=${WORKSPACE}/FasterTransformer/:$PYTHONPATH python3 ${WORKSPACE}/FasterTransformer/examples/pytorch/gptneox/utils/huggingface_gptneox_convert.py \ -i_g 1 \ -m_n gptneox \ -i ${WORKSPACE}/${MODEL} \ -o ${WORKSPACE}/FT-${MODEL} ``` #### Test the FasterTransformer model FIXME ```bash echo "Hi, who are you?" > gptneox_input echo "And you are?" >> gptneox_input python3 ${WORKSPACE}/FasterTransformer/examples/pytorch/gptneox/gptneox_example.py \ --ckpt_path ${WORKSPACE}/FT-${MODEL}/1-gpu \ --tokenizer_path ${WORKSPACE}/${MODEL} \ --sample_input_file gptneox_input ``` #### Update Triton configuration files Fix a typo in the example: ```bash sed -i -e 's@postprocessing@preprocessing@' all_models/gptneox/preprocessing/config.pbtxt ``` Update the path to the PyTorch model, and set to use 1 GPU: ```bash sed -i -e "s@/workspace/ft/models/ft/gptneox/@${WORKSPACE}/FT-${MODEL}/1-gpu@" all_models/gptneox/fastertransformer/config.pbtxt sed -i -e 's@string_value: "2"@string_value: "1"@' all_models/gptneox/fastertransformer/config.pbtxt ``` #### Launch Triton ```bash CUDA_VISIBLE_DEVICES=0 mpirun -n 1 \ --allow-run-as-root /opt/tritonserver/bin/tritonserver \ --model-repository=${WORKSPACE}/all_models/gptneox/ & ``` Now, you should see something like this: ```bash +-------------------+---------+--------+ | Model | Version | Status | +-------------------+---------+--------+ | ensemble | 1 | READY | | fastertransformer | 1 | READY | | postprocessing | 1 | READY | | preprocessing | 1 | READY | +-------------------+---------+--------+ ``` which means the pipeline is ready to make predictions! ### Run client test Let's test the endpoint: ```bash python3 ${WORKSPACE}/tools/gpt/identity_test.py ``` And now the end-to-end test: We first have to fix a bug in the inputs for postprocessing: ```bash sed -i -e 's@prepare_tensor("RESPONSE_INPUT_LENGTHS", output2, FLAGS.protocol)@prepare_tensor("sequence_length", output1, FLAGS.protocol)@' ${WORKSPACE}/tools/gpt/end_to_end_test.py ``` ```bash python3 ${WORKSPACE}/tools/gpt/end_to_end_test.py ```