### GPU GPU via CUDA is supported via Hugging Face type models and LLaMa.cpp models. #### Google Colab A Google Colab version of a 3B GPU model is at: [![](https://colab.research.google.com/assets/colab-badge.svg) h2oGPT GPU](https://colab.research.google.com/drive/143-KFHs2iCqXTQLI2pFCDiR69z0dR8iE?usp=sharing) A local copy of that GPU Google Colab is [h2oGPT_GPU.ipynb](h2oGPT_GPU.ipynb). --- #### GPU (CUDA) For help installing cuda toolkit, see [CUDA Toolkit](INSTALL.md#installing-cuda-toolkit). ```bash git clone https://github.com/h2oai/h2ogpt.git cd h2ogpt pip install -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cu118 pip install -r reqs_optional/requirements_optional_langchain.txt pip install -r reqs_optional/requirements_optional_gpt4all.txt pip install -r reqs_optional/requirements_optional_langchain.gpllike.txt pip install -r reqs_optional/requirements_optional_langchain.urls.txt # Optional: support docx, pptx, ArXiv, etc. sudo apt-get install -y libmagic-dev poppler-utils tesseract-ocr libreoffice # Optional: for supporting unstructured package python -m nltk.downloader all ``` then check that can see CUDA from Torch: ```python import torch print(torch.cuda.is_available()) ``` should print True. To support [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) models, run: ```bash pip install auto-gptq[triton] ``` although to avoid building the package you can run the [specific version](https://github.com/PanQiWei/AutoGPTQ/releases), e.g. ```bash pip install https://github.com/PanQiWei/AutoGPTQ/releases/download/v0.2.2/auto_gptq-0.2.2+cu118-cp310-cp310-linux_x86_64.whl ``` However, if one sees issues like `CUDA extension not installed.` mentioned during loading of model, need to recompile, because, otherwise, the generation will be much slower even if uses GPU. If you have CUDA 11.7 installed from NVIDIA, run: ```bash pip uninstall -y auto-gptq ; CUDA_HOME=/usr/local/cuda-11.8 GITHUB_ACTIONS=true pip install auto-gptq --no-cache-dir ``` or use cuda-11.8 if one has that installed, etc. If one used conda cudatoolkit: ```bash conda install -c conda-forge cudatoolkit-dev ``` then use that location instead: ```bash pip uninstall -y auto-gptq ; CUDA_HOME=$CONDA_PREFIX GITHUB_ACTIONS=true pip install auto-gptq --no-cache-dir ``` To run in ChatBot mode, do: ```bash python generate.py --base_model=h2oai/h2ogpt-oig-oasst1-512-6_9b --load_8bit=True ``` Then point browser at http://0.0.0.0:7860 (linux) or http://localhost:7860 (windows/mac) or the public live URL printed by the server (disable shared link with `--share=False`). For 4-bit or 8-bit support, older GPUs may require older bitsandbytes installed as `pip uninstall bitsandbytes -y ; pip install bitsandbytes==0.38.1`. For production uses, we recommend at least the 12B model, ran as: ```bash python generate.py --base_model=h2oai/h2ogpt-oasst1-512-12b --load_8bit=True ``` and one can use `--h2ocolors=False` to get soft blue-gray colors instead of H2O.ai colors. [Here](FAQ.md#what-envs-can-i-pass-to-control-h2ogpt) is a list of environment variables that can control some things in `generate.py`. Note if you download the model yourself and point `--base_model` to that location, you'll need to specify the prompt_type as well by running: ```bash python generate.py --base_model= --load_8bit=True --prompt_type=human_bot ``` for some user path `` and the `prompt_type` must match the model or a new version created in `prompter.py` or added in UI/CLI via `prompt_dict`. For quickly using a private document collection for Q/A, place documents (PDFs, text, etc.) into a folder called `user_path` and run ```bash python generate.py --base_model=h2oai/h2ogpt-oig-oasst1-512-6_9b --load_8bit=True --langchain_mode=UserData --user_path=user_path ``` For more details about document Q/A, see [LangChain Readme](README_LangChain.md). For 4-bit support, when running generate pass `--load_4bit=True`, which is only supported for certain [architectures](https://github.com/huggingface/peft#models-support-matrix) like GPT-NeoX-20B, GPT-J, LLaMa, etc. Any other instruct-tuned base models can be used, including non-h2oGPT ones. [Larger models require more GPU memory](FAQ.md#larger-models-require-more-gpu-memory). --- #### AutoGPTQ An example with AutoGPTQ is: ```bash python generate.py --base_model=TheBloke/Nous-Hermes-13B-GPTQ --score_model=None --load_gptq=nous-hermes-13b-GPTQ-4bit-128g.no-act.order --use_safetensors=True --prompt_type=instruct --langchain_mode=MyData ``` This will use about 9800MB. You can also add `--hf_embedding_model=sentence-transformers/all-MiniLM-L6-v2` to save some memory on embedding to reach 9340MB. --- #### GPU with LLaMa * Install langchain, and GPT4All, and python LLaMa dependencies: ```bash pip install -r reqs_optional/requirements_optional_langchain.txt pip install -r reqs_optional/requirements_optional_gpt4all.txt ``` then compile llama-cpp-python with CUDA support: ```bash conda install -c "nvidia/label/cuda-12.1.1" cuda-toolkit # maybe optional pip uninstall -y llama-cpp-python export LLAMA_CUBLAS=1 export CMAKE_ARGS=-DLLAMA_CUBLAS=on export FORCE_CMAKE=1 export CUDA_HOME=$HOME/miniconda3/envs/h2ogpt CMAKE_ARGS="-DLLAMA_CUBLAS=on" FORCE_CMAKE=1 pip install llama-cpp-python==0.1.68 --no-cache-dir --verbose ``` and uncomment `# n_gpu_layers=20` in `.env_gpt4all`, one can try also `40` instead of `20`. If one sees `/usr/bin/nvcc` mentioned in errors, that file needs to be removed as would likely conflict with version installed for conda. Then run: ```bash python generate.py --base_model='llama' --prompt_type=wizard2 --score_model=None --langchain_mode='UserData' --user_path=user_path ``` when loading you should see something like: ```text Using Model llama Prep: persist_directory=db_dir_UserData exists, user_path=user_path passed, adding any changed or new documents load INSTRUCTOR_Transformer max_seq_length 512 0it [00:00, ?it/s] 0it [00:00, ?it/s] Loaded 0 sources for potentially adding to UserData ggml_init_cublas: found 2 CUDA devices: Device 0: NVIDIA GeForce RTX 3090 Ti Device 1: NVIDIA GeForce RTX 2080 llama.cpp: loading model from WizardLM-7B-uncensored.ggmlv3.q8_0.bin llama_model_load_internal: format = ggjt v3 (latest) llama_model_load_internal: n_vocab = 32001 llama_model_load_internal: n_ctx = 1792 llama_model_load_internal: n_embd = 4096 llama_model_load_internal: n_mult = 256 llama_model_load_internal: n_head = 32 llama_model_load_internal: n_layer = 32 llama_model_load_internal: n_rot = 128 llama_model_load_internal: ftype = 7 (mostly Q8_0) llama_model_load_internal: n_ff = 11008 llama_model_load_internal: model size = 7B llama_model_load_internal: ggml ctx size = 0.08 MB llama_model_load_internal: using CUDA for GPU acceleration ggml_cuda_set_main_device: using device 0 (NVIDIA GeForce RTX 3090 Ti) as main device llama_model_load_internal: mem required = 4518.85 MB (+ 1026.00 MB per state) llama_model_load_internal: allocating batch_size x (512 kB + n_ctx x 128 B) = 368 MB VRAM for the scratch buffer llama_model_load_internal: offloading 20 repeating layers to GPU llama_model_load_internal: offloaded 20/35 layers to GPU llama_model_load_internal: total VRAM used: 4470 MB llama_new_context_with_model: kv self size = 896.00 MB AVX = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | VSX = 0 | Model {'base_model': 'llama', 'tokenizer_base_model': '', 'lora_weights': '', 'inference_server': '', 'prompt_type': 'wizard2', 'prompt_dict': {'promptA': 'Below is an instruction that describes a task. Write a response that appropriately completes the request.', 'promptB': 'Below is an instruction that describes a task. Write a response that appropriately completes the request.', 'PreInstruct': '\n### Instruction:\n', 'PreInput': None, 'PreResponse': '\n### Response:\n', 'terminate_response': ['\n### Response:\n'], 'chat_sep': '\n', 'chat_turn_sep': '\n', 'humanstr': '\n### Instruction:\n', 'botstr': '\n### Response:\n', 'generates_leading_space': False}} Running on local URL: http://0.0.0.0:7860 Running on public URL: https://1ccb24d03273a3d085.gradio.live ``` and GPU usage when using. Note that once `llama-cpp-python` is compiled to support CUDA, it no longer works for CPU mode, so one would have to reinstall it without the above options to recovers CPU mode or have a separate h2oGPT env for CPU mode.