Spaces:
Running
Running
File size: 20,648 Bytes
1543414 ad25137 1543414 ad25137 1543414 ad25137 1543414 ad25137 1543414 96139ef 1543414 96139ef 1543414 ad25137 1543414 96139ef 1543414 b54f134 96139ef 1543414 b54f134 1543414 b54f134 1543414 b54f134 1543414 96139ef 1543414 b54f134 1543414 96139ef 1543414 96139ef 1543414 96139ef 1543414 96139ef 1543414 96139ef 1543414 b54f134 1543414 ad25137 1543414 ad25137 1543414 ad25137 37ef5f5 1543414 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
import glob
import json
import os
import shutil
import sys
import urllib
from collections import defaultdict
from datetime import datetime
from statistics import mean
import pandas as pd
import requests
from constants import BASE_WHISPERKIT_BENCHMARK_URL
from text_normalizer import text_normalizer
from utils import compute_average_wer, download_dataset
def fetch_evaluation_data(url):
"""
Fetches evaluation data from the given URL.
:param url: The URL to fetch the evaluation data from.
:returns: The evaluation data as a dictionary.
:rauses: sys.exit if the request fails
"""
response = requests.get(url)
if response.status_code == 200:
return json.loads(response.text)
else:
sys.exit(f"Failed to fetch WhisperKit evals: {response.text}")
def generate_device_map(base_dir):
"""
Generates a mapping of device identifiers to their corresponding device models.
This function iterates through all summary files in the specified base directory and its subdirectories,
extracting device identifier and device model information. It stores this information in a dictionary,
where the keys are device identifiers and the values are device models.
:param base_dir: The base directory to search for summary files.
:returns: A dictionary mapping device identifiers to device models.
"""
device_map = {}
# Find all summary files recursively
summary_files = glob.glob(f"{base_dir}/**/*summary*.json", recursive=True)
for file_path in summary_files:
try:
with open(file_path, "r") as f:
data = json.load(f)
# Extract device information and create simple mapping
if "deviceModel" in data and "deviceIdentifier" in data:
device_map[data["deviceIdentifier"]] = data["deviceModel"]
except json.JSONDecodeError:
print(f"Error reading {file_path}")
except Exception as e:
print(f"Error processing {file_path}: {e}")
# Save the device map to project root
output_path = "dashboard_data/device_map.json"
with open(output_path, "w") as f:
json.dump(device_map, f, indent=4, sort_keys=True)
return device_map
def get_device_name(device):
"""
Gets the device name from the device map if it exists.
:param device: String representing the device name.
:returns: The device name from the device map if it exists, otherwise the input device name.
"""
with open("dashboard_data/device_map.json", "r") as f:
device_map = json.load(f)
return device_map.get(device, device).replace(" ", "_")
def process_benchmark_file(file_path, dataset_dfs, results, releases):
"""
Processes a single benchmark file and updates the results dictionary.
:param file_path: Path to the benchmark JSON file.
:param dataset_dfs: Dictionary of DataFrames containing dataset information.
:param results: Dictionary to store the processed results.
This function reads a benchmark JSON file, extracts relevant information,
and updates the results dictionary with various metrics including WER,
speed, tokens per second, and quality of inference (QoI).
"""
with open(file_path, "r") as file:
test_results = json.load(file)
if len(test_results) == 0:
return
commit_hash_timestamp = file_path.split("/")[-2]
commit_timestamp, commit_hash = commit_hash_timestamp.split("_")
if commit_hash not in releases:
return
first_test_result = test_results[0]
model = first_test_result["testInfo"]["model"]
device = first_test_result["testInfo"]["device"]
dataset_dir = first_test_result["testInfo"]["datasetDir"]
if "iPhone" in device or "iPad" in device:
version_numbers = first_test_result["staticAttributes"]["osVersion"].split(".")
if len(version_numbers) == 3 and version_numbers[-1] == "0":
version_numbers.pop()
os_info = f"""{'iOS' if 'iPhone' in device else 'iPadOS'}_{".".join(version_numbers)}"""
else:
os_info = f"macOS_{first_test_result['staticAttributes']['osVersion']}"
timestamp = first_test_result["testInfo"]["date"]
key = (model, device, os_info, commit_timestamp)
dataset_name = dataset_dir
for test_result in test_results:
test_info = test_result["testInfo"]
audio_file_name = test_info["audioFile"]
dataset_df = dataset_dfs[dataset_name]
wer_entry = {
"prediction": text_normalizer(test_info["prediction"]),
"reference": text_normalizer(test_info["reference"]),
}
results[key]["timestamp"] = timestamp
results[key]["average_wer"].append(wer_entry)
input_audio_seconds = test_info["timings"]["inputAudioSeconds"]
full_pipeline = test_info["timings"]["fullPipeline"]
total_decoding_loops = test_info["timings"]["totalDecodingLoops"]
results[key]["dataset_speed"][dataset_name][
"inputAudioSeconds"
] += input_audio_seconds
results[key]["dataset_speed"][dataset_name]["fullPipeline"] += full_pipeline
results[key]["speed"]["inputAudioSeconds"] += input_audio_seconds
results[key]["speed"]["fullPipeline"] += full_pipeline
results[key]["commit_hash"] = commit_hash
results[key]["commit_timestamp"] = commit_timestamp
results[key]["dataset_tokens_per_second"][dataset_name][
"totalDecodingLoops"
] += total_decoding_loops
results[key]["dataset_tokens_per_second"][dataset_name][
"fullPipeline"
] += full_pipeline
results[key]["tokens_per_second"]["totalDecodingLoops"] += total_decoding_loops
results[key]["tokens_per_second"]["fullPipeline"] += full_pipeline
audio = audio_file_name.split(".")[0]
if dataset_name == "earnings22-10mins":
audio = audio.split("-")[0]
dataset_row = dataset_df.loc[dataset_df["file"].str.contains(audio)].iloc[0]
reference_wer = dataset_row["wer"]
prediction_wer = test_info["wer"]
results[key]["qoi"].append(1 if prediction_wer <= reference_wer else 0)
def process_summary_file(file_path, results, releases):
"""
Processes a summary file and updates the results dictionary with device support information.
:param file_path: Path to the summary JSON file.
:param results: Dictionary to store the processed results.
:param releases: Set of release commit hashes to process.
This function reads a summary JSON file, extracts information about supported
and failed models for a specific device and OS combination, and updates the
results dictionary accordingly. It creates separate entries for each release.
"""
with open(file_path, "r") as file:
summary_data = json.load(file)
if summary_data["commitHash"] not in releases:
return
device = summary_data["deviceIdentifier"]
os = f"{'iPadOS' if 'iPad' in device else summary_data['osType']} {summary_data['osVersion']}"
commit_hash = summary_data["commitHash"]
commit_timestamp = summary_data["commitTimestamp"]
test_file_name = file_path.split("/")[-1]
test_timestamp = test_file_name.split("_")[-1].replace(".json", "")
key = (device, os, commit_hash)
if key in results:
existing_commit_timestamp = results[key]["commitTimestamp"]
existing_test_timestamp = results[key]["testTimestamp"]
existing_commit_dt = datetime.strptime(existing_commit_timestamp, "%Y-%m-%dT%H%M%S")
new_commit_dt = datetime.strptime(commit_timestamp, "%Y-%m-%dT%H%M%S")
existing_test_dt = datetime.strptime(existing_test_timestamp, "%Y-%m-%dT%H%M%S")
new_test_dt = datetime.strptime(test_timestamp, "%Y-%m-%dT%H%M%S")
if new_test_dt < existing_test_dt or new_commit_dt < existing_commit_dt:
return
else:
results[key] = {}
supported_models = set(summary_data["modelsTested"])
failed_models = set()
dataset_count = 2
for model, value in summary_data["testResults"].items():
if model not in summary_data["failureInfo"]:
dataset_count = len(value)
break
for failed_model in summary_data["failureInfo"]:
if (
failed_model in summary_data["testResults"]
and len(summary_data["testResults"][failed_model]) == dataset_count
):
continue
supported_models.discard(failed_model)
failed_models.add(failed_model)
results[key]["supportedModels"] = supported_models
results[key]["commitHash"] = commit_hash
results[key]["commitTimestamp"] = commit_timestamp
results[key]["testTimestamp"] = test_timestamp
results[key]["failedModels"] = (failed_models, file_path)
results["modelsTested"] |= supported_models
results["devices"].add(device)
def calculate_and_save_performance_results(
performance_results, performance_output_path
):
"""
Calculates final performance metrics and saves them to a JSON file.
:param performance_results: Dictionary containing raw performance data.
:param performance_output_path: Path to save the processed performance results.
This function processes the raw performance data, calculates average metrics,
and writes the final results to a JSON file, with each entry representing
a unique combination of model, device, and OS.
"""
not_supported = []
with open(performance_output_path, "w") as performance_file:
for key, data in performance_results.items():
model, device, os_info, timestamp = key
speed = round(
data["speed"]["inputAudioSeconds"] / data["speed"]["fullPipeline"], 2
)
if speed < 1.0:
not_supported.append((model, device, os_info))
continue
performance_entry = {
"model": model.replace("_", "/"),
"device": get_device_name(device).replace("_", " "),
"os": os_info.replace("_", " "),
"timestamp": data["timestamp"],
"speed": speed,
"tokens_per_second": round(
data["tokens_per_second"]["totalDecodingLoops"]
/ data["tokens_per_second"]["fullPipeline"],
2,
),
"dataset_speed": {
dataset: round(
speed_info["inputAudioSeconds"] / speed_info["fullPipeline"], 2
)
for dataset, speed_info in data["dataset_speed"].items()
},
"dataset_tokens_per_second": {
dataset: round(
tps_info["totalDecodingLoops"] / tps_info["fullPipeline"], 2
)
for dataset, tps_info in data["dataset_tokens_per_second"].items()
},
"average_wer": compute_average_wer(data["average_wer"]),
"qoi": round(mean(data["qoi"]), 2),
"commit_hash": data["commit_hash"],
"commit_timestamp": data["commit_timestamp"],
}
json.dump(performance_entry, performance_file)
performance_file.write("\n")
return not_supported
def calculate_and_save_support_results(
support_results, not_supported, support_output_path
):
"""
Calculates device support results and saves them to separate CSV files for each release.
:param support_results: Dictionary containing device support information.
:param support_output_path: Base path to save the processed support results.
:param not_supported: List of (model, device, os) tuples that are not supported.
This function processes the device support data and creates separate CSV files
showing which models are supported on different devices and OS versions,
using checkmarks, warning signs, question marks or Not supported to
indicate support status.
"""
all_models = sorted(support_results["modelsTested"])
# Group results by commit hash
results_by_commit = {}
for key, data in support_results.items():
if key in ["modelsTested", "devices"]:
continue
device, os, commit_hash = key
if commit_hash not in results_by_commit:
results_by_commit[commit_hash] = {
"data": {},
"devices": set(),
"timestamp": data["commitTimestamp"]
}
results_by_commit[commit_hash]["data"][key] = data
results_by_commit[commit_hash]["devices"].add(device)
# Generate separate CSV for each commit
for commit_hash, commit_data in results_by_commit.items():
commit_devices = sorted(commit_data["devices"])
df = pd.DataFrame(index=all_models, columns=["Model"] + commit_devices)
for model in all_models:
row = {"Model": model}
for device in commit_devices:
row[device] = ""
for key, data in commit_data["data"].items():
device, os, _ = key
supported_models = data["supportedModels"]
failed_models, file_path = data["failedModels"]
directories = file_path.split("/")
commit_file, summary_file = directories[-2], directories[-1]
url = f"{BASE_WHISPERKIT_BENCHMARK_URL}/{commit_file}/{urllib.parse.quote(summary_file)}"
if model in supported_models:
current_value = row[device]
new_value = (
f"✅ {os}"
if current_value == ""
else f"{current_value}<p>✅ {os}</p>"
)
elif model in failed_models:
current_value = row[device]
new_value = (
f"""⚠️ <a style='color: #3B82F6; text-decoration: underline; text-decoration-style: dotted;' href={url}>{os}</a>"""
if current_value == ""
else f"""{current_value}<p>⚠️ <a style='color: #3B82F6; text-decoration: underline; text-decoration-style: dotted;' href={url}>{os}</a></p>"""
)
else:
current_value = row[device]
new_value = (
f"? {os}"
if current_value == ""
else f"{current_value}<p>? {os}</p>"
)
row[device] = new_value
df.loc[model] = row
# Mark unsupported combinations for this commit
commit_not_supported = [
(model, device, os)
for model, device, os in not_supported
if any(key[2] == commit_hash for key in support_results if key not in ["modelsTested", "devices"] and model == key[0])
]
remove_unsupported_cells(df, commit_not_supported)
# Format column headers
cols = df.columns.tolist()
cols = ["Model"] + [
f"""{get_device_name(col).replace("_", " ")} ({col})""" for col in cols if col != "Model"
]
df.columns = cols
# Save to commit-specific file
output_path = support_output_path.replace(
".csv",
f"_{commit_hash[:7]}.csv"
)
df.to_csv(output_path, index=True)
def remove_unsupported_cells(df, not_supported):
"""
Updates the DataFrame to mark unsupported model-device combinations.
This function reads a configuration file to determine which models are supported
on which devices. It then iterates over the DataFrame and sets the value to "Not supported"
for any model-device combination that is not supported according to the configuration.
:param df: A Pandas DataFrame where the index represents models and columns represent devices.
"""
with open("dashboard_data/config.json", "r") as file:
config_data = json.load(file)
device_support = config_data["device_support"]
for info in device_support:
identifiers = set(info["identifiers"])
supported = set(info["models"]["supported"])
for model in df.index:
for device in df.columns:
if (
any(identifier in device for identifier in identifiers)
and model not in supported
):
df.at[model, device] = "Not Supported"
for model, device, os in not_supported:
df.at[model, device] = "Not Supported"
def main():
"""
Main function to orchestrate the performance data generation process.
This function performs the following steps:
1. Downloads benchmark data if requested.
2. Fetches evaluation data for various datasets.
3. Processes benchmark files and summary files.
4. Calculates and saves performance and support results.
"""
source_xcresult_repo = "argmaxinc/whisperkit-evals-dataset"
source_xcresult_subfolder = "benchmark_data/"
source_xcresult_directory = f"{source_xcresult_repo}/{source_xcresult_subfolder}"
if len(sys.argv) > 1 and sys.argv[1] == "download":
try:
shutil.rmtree(source_xcresult_repo)
except:
print("Nothing to remove.")
download_dataset(
source_xcresult_repo, source_xcresult_repo, source_xcresult_subfolder
)
datasets = {
"Earnings-22": "https://huggingface.co/datasets/argmaxinc/whisperkit-evals/resolve/main/WhisperOpenAIAPI/openai_whisper-large-v2/earnings22/2024-03-04_13%3A39%3A42_GMT-0800.json",
"LibriSpeech": "https://huggingface.co/datasets/argmaxinc/whisperkit-evals/resolve/main/WhisperOpenAIAPI/openai_whisper-large-v2/librispeech/2024-02-28_18%3A45%3A02_GMT-0800.json?download=true",
"earnings22-10mins": "https://huggingface.co/datasets/argmaxinc/whisperkit-evals/resolve/main/WhisperOpenAIAPI/openai_whisper-large-v2/earnings22/2024-03-04_13%3A39%3A42_GMT-0800.json",
"librispeech-10mins": "https://huggingface.co/datasets/argmaxinc/whisperkit-evals/resolve/main/WhisperOpenAIAPI/openai_whisper-large-v2/librispeech/2024-02-28_18%3A45%3A02_GMT-0800.json?download=true",
"earnings22-12hours": "https://huggingface.co/datasets/argmaxinc/whisperkit-evals/resolve/main/WhisperOpenAIAPI/openai_whisper-large-v2/earnings22/2024-03-04_13%3A39%3A42_GMT-0800.json",
"librispeech": "https://huggingface.co/datasets/argmaxinc/whisperkit-evals/resolve/main/WhisperOpenAIAPI/openai_whisper-large-v2/librispeech/2024-02-28_18%3A45%3A02_GMT-0800.json?download=true",
}
dataset_dfs = {}
for dataset_name, url in datasets.items():
evals = fetch_evaluation_data(url)
dataset_dfs[dataset_name] = pd.json_normalize(evals["results"])
performance_results = defaultdict(
lambda: {
"average_wer": [],
"qoi": [],
"speed": {"inputAudioSeconds": 0, "fullPipeline": 0},
"tokens_per_second": {"totalDecodingLoops": 0, "fullPipeline": 0},
"dataset_speed": defaultdict(
lambda: {"inputAudioSeconds": 0, "fullPipeline": 0}
),
"dataset_tokens_per_second": defaultdict(
lambda: {"totalDecodingLoops": 0, "fullPipeline": 0}
),
"timestamp": None,
"commit_hash": None,
"commit_timestamp": None,
"test_timestamp": None,
}
)
support_results = {"modelsTested": set(), "devices": set()}
generate_device_map(source_xcresult_directory)
with open("dashboard_data/version.json", "r") as f:
version = json.load(f)
releases = set(version["releases"])
for subdir, _, files in os.walk(source_xcresult_directory):
for filename in files:
file_path = os.path.join(subdir, filename)
if not filename.endswith(".json"):
continue
elif "summary" in filename:
process_summary_file(file_path, support_results, releases)
else:
process_benchmark_file(file_path, dataset_dfs, performance_results, releases)
not_supported = calculate_and_save_performance_results(
performance_results, "dashboard_data/performance_data.json"
)
calculate_and_save_support_results(
support_results, not_supported, "dashboard_data/support_data.csv"
)
if __name__ == "__main__":
main()
|