Commit
·
adc79ce
1
Parent(s):
54d4d8d
feat: Add support for textcat
Browse files
src/distilabel_dataset_generator/apps/textcat.py
CHANGED
@@ -1,4 +1,205 @@
|
|
1 |
-
from
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
|
3 |
+
import gradio as gr
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
from src.distilabel_dataset_generator.apps.base import (
|
7 |
+
get_main_ui,
|
8 |
+
get_pipeline_code_ui,
|
9 |
+
hide_success_message,
|
10 |
+
push_dataset_to_hub,
|
11 |
+
push_pipeline_code_to_hub,
|
12 |
+
show_success_message_argilla,
|
13 |
+
show_success_message_hub,
|
14 |
+
validate_argilla_user_workspace_dataset,
|
15 |
+
)
|
16 |
+
from src.distilabel_dataset_generator.pipelines.textcat import (
|
17 |
+
DEFAULT_DATASET_DESCRIPTIONS,
|
18 |
+
DEFAULT_DATASETS,
|
19 |
+
DEFAULT_SYSTEM_PROMPTS,
|
20 |
+
generate_pipeline_code,
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
def push_dataset_to_argilla(dataset: pd.DataFrame, dataset_name: str) -> pd.DataFrame:
|
25 |
+
return dataset
|
26 |
+
|
27 |
+
|
28 |
+
def generate_system_prompt(dataset_description: str) -> str:
|
29 |
+
return dataset_description
|
30 |
+
|
31 |
+
|
32 |
+
def generate_dataset(
|
33 |
+
system_prompt: str, labels: List[str], multi_label: bool
|
34 |
+
) -> pd.DataFrame:
|
35 |
+
return pd.DataFrame({"prompt": [system_prompt], "completion": [system_prompt]})
|
36 |
+
|
37 |
+
|
38 |
+
(
|
39 |
+
app,
|
40 |
+
main_ui,
|
41 |
+
custom_input_ui,
|
42 |
+
dataset_description,
|
43 |
+
examples,
|
44 |
+
btn_generate_system_prompt,
|
45 |
+
system_prompt,
|
46 |
+
sample_dataset,
|
47 |
+
btn_generate_sample_dataset,
|
48 |
+
dataset_name,
|
49 |
+
add_to_existing_dataset,
|
50 |
+
btn_generate_full_dataset_copy,
|
51 |
+
btn_generate_and_push_to_argilla,
|
52 |
+
btn_push_to_argilla,
|
53 |
+
org_name,
|
54 |
+
repo_name,
|
55 |
+
private,
|
56 |
+
btn_generate_full_dataset,
|
57 |
+
btn_generate_and_push_to_hub,
|
58 |
+
btn_push_to_hub,
|
59 |
+
final_dataset,
|
60 |
+
success_message,
|
61 |
+
) = get_main_ui(
|
62 |
+
default_dataset_descriptions=DEFAULT_DATASET_DESCRIPTIONS,
|
63 |
+
default_system_prompts=DEFAULT_SYSTEM_PROMPTS,
|
64 |
+
default_datasets=DEFAULT_DATASETS,
|
65 |
+
fn_generate_system_prompt=generate_system_prompt,
|
66 |
+
fn_generate_dataset=generate_dataset,
|
67 |
+
)
|
68 |
+
|
69 |
+
with app:
|
70 |
+
with main_ui:
|
71 |
+
with custom_input_ui:
|
72 |
+
labels = gr.Dropdown(
|
73 |
+
choices=[],
|
74 |
+
allow_custom_value=True,
|
75 |
+
interactive=True,
|
76 |
+
label="Labels",
|
77 |
+
multiselect=True,
|
78 |
+
)
|
79 |
+
num_labels = gr.Number(
|
80 |
+
label="Number of labels", value=2, minimum=1, maximum=10
|
81 |
+
)
|
82 |
+
num_rows = gr.Number(
|
83 |
+
label="Number of rows", value=10, minimum=1, maximum=500
|
84 |
+
)
|
85 |
+
|
86 |
+
pipeline_code = get_pipeline_code_ui(
|
87 |
+
generate_pipeline_code(system_prompt.value, labels.value, multi_label.value)
|
88 |
+
)
|
89 |
+
|
90 |
+
# define app triggers
|
91 |
+
gr.on(
|
92 |
+
triggers=[
|
93 |
+
btn_generate_full_dataset.click,
|
94 |
+
btn_generate_full_dataset_copy.click,
|
95 |
+
],
|
96 |
+
fn=hide_success_message,
|
97 |
+
outputs=[success_message],
|
98 |
+
).then(
|
99 |
+
fn=generate_dataset,
|
100 |
+
inputs=[system_prompt, labels, multi_label],
|
101 |
+
outputs=[final_dataset],
|
102 |
+
show_progress=True,
|
103 |
+
)
|
104 |
+
|
105 |
+
btn_generate_and_push_to_argilla.click(
|
106 |
+
fn=validate_argilla_user_workspace_dataset,
|
107 |
+
inputs=[dataset_name, final_dataset, add_to_existing_dataset],
|
108 |
+
outputs=[final_dataset],
|
109 |
+
show_progress=True,
|
110 |
+
).success(
|
111 |
+
fn=hide_success_message,
|
112 |
+
outputs=[success_message],
|
113 |
+
).success(
|
114 |
+
fn=generate_dataset,
|
115 |
+
inputs=[system_prompt, labels, multi_label],
|
116 |
+
outputs=[final_dataset],
|
117 |
+
show_progress=True,
|
118 |
+
).success(
|
119 |
+
fn=push_dataset_to_argilla,
|
120 |
+
inputs=[final_dataset, dataset_name],
|
121 |
+
outputs=[final_dataset],
|
122 |
+
show_progress=True,
|
123 |
+
).success(
|
124 |
+
fn=show_success_message_argilla,
|
125 |
+
inputs=[],
|
126 |
+
outputs=[success_message],
|
127 |
+
)
|
128 |
+
|
129 |
+
btn_generate_and_push_to_hub.click(
|
130 |
+
fn=hide_success_message,
|
131 |
+
outputs=[success_message],
|
132 |
+
).then(
|
133 |
+
fn=generate_dataset,
|
134 |
+
inputs=[system_prompt, labels, multi_label],
|
135 |
+
outputs=[final_dataset],
|
136 |
+
show_progress=True,
|
137 |
+
).then(
|
138 |
+
fn=push_dataset_to_hub,
|
139 |
+
inputs=[final_dataset, private, org_name, repo_name],
|
140 |
+
outputs=[final_dataset],
|
141 |
+
show_progress=True,
|
142 |
+
).then(
|
143 |
+
fn=push_pipeline_code_to_hub,
|
144 |
+
inputs=[pipeline_code, org_name, repo_name],
|
145 |
+
outputs=[],
|
146 |
+
show_progress=True,
|
147 |
+
).success(
|
148 |
+
fn=show_success_message_hub,
|
149 |
+
inputs=[org_name, repo_name],
|
150 |
+
outputs=[success_message],
|
151 |
+
)
|
152 |
+
|
153 |
+
btn_push_to_hub.click(
|
154 |
+
fn=hide_success_message,
|
155 |
+
outputs=[success_message],
|
156 |
+
).then(
|
157 |
+
fn=push_dataset_to_hub,
|
158 |
+
inputs=[final_dataset, private, org_name, repo_name],
|
159 |
+
outputs=[final_dataset],
|
160 |
+
show_progress=True,
|
161 |
+
).then(
|
162 |
+
fn=push_pipeline_code_to_hub,
|
163 |
+
inputs=[pipeline_code, org_name, repo_name],
|
164 |
+
outputs=[],
|
165 |
+
show_progress=True,
|
166 |
+
).success(
|
167 |
+
fn=show_success_message_hub,
|
168 |
+
inputs=[org_name, repo_name],
|
169 |
+
outputs=[success_message],
|
170 |
+
)
|
171 |
+
|
172 |
+
btn_push_to_argilla.click(
|
173 |
+
fn=hide_success_message,
|
174 |
+
outputs=[success_message],
|
175 |
+
).success(
|
176 |
+
fn=validate_argilla_user_workspace_dataset,
|
177 |
+
inputs=[dataset_name, final_dataset, add_to_existing_dataset],
|
178 |
+
outputs=[final_dataset],
|
179 |
+
show_progress=True,
|
180 |
+
).success(
|
181 |
+
fn=push_dataset_to_argilla,
|
182 |
+
inputs=[final_dataset, dataset_name],
|
183 |
+
outputs=[final_dataset],
|
184 |
+
show_progress=True,
|
185 |
+
).success(
|
186 |
+
fn=show_success_message_argilla,
|
187 |
+
inputs=[],
|
188 |
+
outputs=[success_message],
|
189 |
+
)
|
190 |
+
|
191 |
+
system_prompt.change(
|
192 |
+
fn=generate_pipeline_code,
|
193 |
+
inputs=[system_prompt, labels, multi_label],
|
194 |
+
outputs=[pipeline_code],
|
195 |
+
)
|
196 |
+
labels.change(
|
197 |
+
fn=generate_pipeline_code,
|
198 |
+
inputs=[system_prompt, labels, multi_label],
|
199 |
+
outputs=[pipeline_code],
|
200 |
+
)
|
201 |
+
multi_label.change(
|
202 |
+
fn=generate_pipeline_code,
|
203 |
+
inputs=[system_prompt, labels, multi_label],
|
204 |
+
outputs=[pipeline_code],
|
205 |
+
)
|
src/distilabel_dataset_generator/pipelines/textcat.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
import pandas as pd
|
4 |
+
|
5 |
+
DEFAULT_DATASET_DESCRIPTIONS = [
|
6 |
+
"A dataset covering customer reviews for an e-commerce website.",
|
7 |
+
"A dataset covering news articles about various topics.",
|
8 |
+
]
|
9 |
+
|
10 |
+
DEFAULT_DATASETS = [
|
11 |
+
pd.DataFrame.from_dict(
|
12 |
+
{
|
13 |
+
"text": [
|
14 |
+
"I love the product! It's amazing and I'll buy it again.",
|
15 |
+
"The product was okay, but I wouldn't buy it again.",
|
16 |
+
],
|
17 |
+
"label": ["positive", "negative"],
|
18 |
+
}
|
19 |
+
),
|
20 |
+
pd.DataFrame.from_dict(
|
21 |
+
{
|
22 |
+
"text": [
|
23 |
+
"Yesterday, the US stock market had a significant increase.",
|
24 |
+
"New research suggests that the Earth is not a perfect sphere.",
|
25 |
+
],
|
26 |
+
"label": [["economy", "politics"], ["science", "environment"]],
|
27 |
+
}
|
28 |
+
),
|
29 |
+
]
|
30 |
+
|
31 |
+
DEFAULT_SYSTEM_PROMPTS = [
|
32 |
+
"Classify the following customer review as positive or negative.",
|
33 |
+
"Classify the following news article into one or more categories.",
|
34 |
+
]
|
35 |
+
|
36 |
+
|
37 |
+
def generate_pipeline_code(
|
38 |
+
system_prompt: str, labels: List[str], multi_label: bool
|
39 |
+
) -> str:
|
40 |
+
return """
|
41 |
+
from distilabel import Distilabel
|
42 |
+
|
43 |
+
#### PIPELINE CODE HERE
|
44 |
+
"""
|