davidberenstein1957's picture
refactor: redesign of the generator
099e99c
raw
history blame
10.2 kB
import json
import gradio as gr
import pandas as pd
from datasets import load_dataset
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from src.distilabel_dataset_generator.utils import get_org_dropdown
def get_iframe(hub_repo_id) -> str:
if not hub_repo_id:
raise gr.Error("Hub repo id is required")
url = f"https://huggingface.co/datasets/{hub_repo_id}/embed/viewer"
iframe = f"""
<iframe
src="{url}"
frameborder="0"
width="100%"
height="600px"
></iframe>
"""
return iframe
def get_valid_columns(df: pd.DataFrame):
valid_columns = []
for col in df.columns:
sample_val = df[col].iloc[0]
if isinstance(sample_val, str) or (
isinstance(sample_val, list)
and all(isinstance(item, dict) for item in sample_val)
):
valid_columns.append(col)
return valid_columns
def load_dataset_from_hub(hub_repo_id: str, n_rows: int = 10):
gr.Info(message="Loading dataset ...")
if not hub_repo_id:
raise gr.Error("Hub repo id is required")
ds_dict = load_dataset(hub_repo_id)
splits = list(ds_dict.keys())
ds = ds_dict[splits[0]]
if n_rows:
ds = ds.select(range(n_rows))
df = ds.to_pandas()
# Get columns that contain either strings or lists of dictionaries
valid_columns = get_valid_columns(df)
return (
df,
gr.Dropdown(choices=valid_columns, label="Instruction Column"),
gr.Dropdown(choices=valid_columns, label="Instruction Column"),
gr.Dropdown(choices=valid_columns, label="Response Column"),
)
def define_evaluation_aspects(task_type: str):
if task_type == "instruction":
return gr.Dropdown(
value=["overall-rating"],
choices=["complexity", "quality"],
label="Evaluation Aspects",
multiselect=True,
interactive=True,
)
elif task_type == "instruction-response":
return gr.Dropdown(
value=["overall-rating"],
choices=["helpfulness", "truthfulness", "overall-rating", "honesty"],
label="Evaluation Aspects",
multiselect=True,
interactive=True,
)
else:
return gr.Dropdown(interactive=False)
def evaluate_instruction(df: pd.DataFrame, aspects: list[str], instruction_column: str):
pass
def evaluate_instruction_response(
df: pd.DataFrame, aspects: list[str], instruction_column: str, response_column: str
):
pass
def evaluate_custom(
df: pd.DataFrame, aspects: list[str], prompt_template: str, structured_output: dict
):
pass
def _apply_to_dataset(
df: pd.DataFrame,
eval_type: str,
aspects_instruction: list[str],
instruction_column: str,
aspects_instruction_response: list[str],
instruction_column_response: str,
response_column_response: str,
aspects_custom: list[str],
prompt_template: str,
structured_output: dict,
):
if eval_type == "instruction":
df = evaluate_instruction(df, aspects_instruction, instruction_column)
elif eval_type == "instruction-response":
df = evaluate_instruction_response(
df,
aspects_instruction_response,
instruction_column_response,
response_column_response,
)
elif eval_type == "custom":
df = evaluate_custom(df, aspects_custom, prompt_template, structured_output)
return df
def apply_to_sample_dataset(
repo_id: str,
eval_type: str,
aspects_instruction: list[str],
aspects_instruction_response: list[str],
aspects_custom: list[str],
instruction_instruction: str,
instruction_instruction_response: str,
response_instruction_response: str,
prompt_template: str,
structured_output: dict,
):
df, _, _, _ = load_dataset_from_hub(repo_id, n_rows=10)
df = _apply_to_dataset(
df,
eval_type,
aspects_instruction,
instruction_instruction,
aspects_instruction_response,
instruction_instruction_response,
response_instruction_response,
aspects_custom,
prompt_template,
structured_output,
)
return df
def push_to_hub(
org_name: str,
repo_name: str,
private: bool,
n_rows: int,
original_repo_id: str,
eval_type: str,
aspects_instruction: list[str],
aspects_instruction_response: list[str],
aspects_custom: list[str],
instruction_instruction: str,
instruction_instruction_response: str,
response_instruction_response: str,
prompt_template: str,
structured_output: dict,
):
df, _, _, _ = load_dataset_from_hub(original_repo_id, n_rows=n_rows)
df = _apply_to_dataset(
df,
eval_type,
aspects_instruction,
instruction_instruction,
aspects_instruction_response,
instruction_instruction_response,
response_instruction_response,
aspects_custom,
prompt_template,
structured_output,
)
new_repo_id = f"{org_name}/{repo_name}"
print(df)
with gr.Blocks() as app:
gr.Markdown("## Select your input dataset")
gr.HTML("<hr>")
with gr.Row():
with gr.Column(scale=1):
search_in = HuggingfaceHubSearch(
label="Search",
placeholder="Search for a Dataset",
search_type="dataset",
sumbit_on_select=True,
)
load_btn = gr.Button("Load Dataset")
with gr.Column(scale=3):
search_out = gr.HTML(label="Dataset Preview")
gr.Markdown("## Configure your task")
gr.HTML("<hr>")
with gr.Row():
with gr.Column(scale=1):
eval_type = gr.Dropdown(
label="Evaluation Type",
choices=["instruction", "instruction-response", "custom"],
visible=False,
)
with gr.Tab("instruction") as tab_instruction:
aspects_instruction = define_evaluation_aspects("instruction")
instruction_instruction = gr.Dropdown(
label="Instruction Column", interactive=True
)
tab_instruction.select(
lambda: "instruction",
inputs=[],
outputs=[eval_type],
)
with gr.Tab("instruction-response") as tab_instruction_response:
aspects_instruction_response = define_evaluation_aspects(
"instruction-response"
)
instruction_instruction_response = gr.Dropdown(
label="Instruction Column", interactive=True
)
response_instruction_response = gr.Dropdown(
label="Response Column", interactive=True
)
tab_instruction_response.select(
lambda: "instruction-response",
inputs=[],
outputs=[eval_type],
)
with gr.Tab("custom") as tab_custom:
aspects_custom = define_evaluation_aspects("custom")
prompt_template = gr.Code(
label="Prompt Template",
value="{{column_1}} based on {{column_2}}",
language="markdown",
interactive=True,
)
structured_output = gr.Code(
label="Structured Output",
value=json.dumps({"eval_aspect": "str"}),
language="json",
interactive=True,
)
tab_custom.select(
lambda: "custom",
inputs=[],
outputs=[eval_type],
)
btn_apply_to_sample_dataset = gr.Button("Refresh dataset")
with gr.Column(scale=3):
dataframe = gr.Dataframe()
gr.Markdown("## Generate your dataset")
gr.HTML("<hr>")
with gr.Row():
with gr.Column(scale=1):
org_name = get_org_dropdown()
repo_name = gr.Textbox(
label="Repo name",
placeholder="dataset_name",
value="my-distiset",
interactive=True,
)
n_rows = gr.Number(
label="Number of rows",
value=10,
interactive=True,
scale=1,
)
private = gr.Checkbox(
label="Private dataset",
value=False,
interactive=True,
scale=1,
)
btn_push_to_hub = gr.Button("Push to Hub", variant="primary", scale=2)
with gr.Column(scale=3):
success_message = gr.Markdown(visible=False)
search_in.submit(get_iframe, inputs=search_in, outputs=search_out)
load_btn.click(
load_dataset_from_hub,
inputs=[search_in],
outputs=[
dataframe,
instruction_instruction,
instruction_instruction_response,
response_instruction_response,
],
)
btn_apply_to_sample_dataset.click(
apply_to_sample_dataset,
inputs=[
search_in,
eval_type,
aspects_instruction,
aspects_instruction_response,
aspects_custom,
instruction_instruction,
instruction_instruction_response,
response_instruction_response,
prompt_template,
structured_output,
],
outputs=dataframe,
)
btn_push_to_hub.click(
push_to_hub,
inputs=[
org_name,
repo_name,
private,
n_rows,
search_in,
eval_type,
aspects_instruction,
aspects_instruction_response,
aspects_custom,
instruction_instruction,
instruction_instruction_response,
response_instruction_response,
prompt_template,
structured_output,
],
outputs=success_message,
)
app.load(fn=get_org_dropdown, outputs=[org_name])