|
import json |
|
|
|
import gradio as gr |
|
import pandas as pd |
|
from datasets import load_dataset |
|
from gradio_huggingfacehub_search import HuggingfaceHubSearch |
|
|
|
from src.distilabel_dataset_generator.utils import get_org_dropdown |
|
|
|
|
|
def get_iframe(hub_repo_id) -> str: |
|
if not hub_repo_id: |
|
raise gr.Error("Hub repo id is required") |
|
url = f"https://huggingface.co/datasets/{hub_repo_id}/embed/viewer" |
|
iframe = f""" |
|
<iframe |
|
src="{url}" |
|
frameborder="0" |
|
width="100%" |
|
height="600px" |
|
></iframe> |
|
""" |
|
return iframe |
|
|
|
|
|
def get_valid_columns(df: pd.DataFrame): |
|
valid_columns = [] |
|
for col in df.columns: |
|
sample_val = df[col].iloc[0] |
|
if isinstance(sample_val, str) or ( |
|
isinstance(sample_val, list) |
|
and all(isinstance(item, dict) for item in sample_val) |
|
): |
|
valid_columns.append(col) |
|
return valid_columns |
|
|
|
|
|
def load_dataset_from_hub(hub_repo_id: str, n_rows: int = 10): |
|
gr.Info(message="Loading dataset ...") |
|
if not hub_repo_id: |
|
raise gr.Error("Hub repo id is required") |
|
ds_dict = load_dataset(hub_repo_id) |
|
splits = list(ds_dict.keys()) |
|
ds = ds_dict[splits[0]] |
|
if n_rows: |
|
ds = ds.select(range(n_rows)) |
|
df = ds.to_pandas() |
|
|
|
valid_columns = get_valid_columns(df) |
|
return ( |
|
df, |
|
gr.Dropdown(choices=valid_columns, label="Instruction Column"), |
|
gr.Dropdown(choices=valid_columns, label="Instruction Column"), |
|
gr.Dropdown(choices=valid_columns, label="Response Column"), |
|
) |
|
|
|
|
|
def define_evaluation_aspects(task_type: str): |
|
if task_type == "instruction": |
|
return gr.Dropdown( |
|
value=["overall-rating"], |
|
choices=["complexity", "quality"], |
|
label="Evaluation Aspects", |
|
multiselect=True, |
|
interactive=True, |
|
) |
|
elif task_type == "instruction-response": |
|
return gr.Dropdown( |
|
value=["overall-rating"], |
|
choices=["helpfulness", "truthfulness", "overall-rating", "honesty"], |
|
label="Evaluation Aspects", |
|
multiselect=True, |
|
interactive=True, |
|
) |
|
else: |
|
return gr.Dropdown(interactive=False) |
|
|
|
|
|
def evaluate_instruction(df: pd.DataFrame, aspects: list[str], instruction_column: str): |
|
pass |
|
|
|
|
|
def evaluate_instruction_response( |
|
df: pd.DataFrame, aspects: list[str], instruction_column: str, response_column: str |
|
): |
|
pass |
|
|
|
|
|
def evaluate_custom( |
|
df: pd.DataFrame, aspects: list[str], prompt_template: str, structured_output: dict |
|
): |
|
pass |
|
|
|
|
|
def _apply_to_dataset( |
|
df: pd.DataFrame, |
|
eval_type: str, |
|
aspects_instruction: list[str], |
|
instruction_column: str, |
|
aspects_instruction_response: list[str], |
|
instruction_column_response: str, |
|
response_column_response: str, |
|
aspects_custom: list[str], |
|
prompt_template: str, |
|
structured_output: dict, |
|
): |
|
if eval_type == "instruction": |
|
df = evaluate_instruction(df, aspects_instruction, instruction_column) |
|
elif eval_type == "instruction-response": |
|
df = evaluate_instruction_response( |
|
df, |
|
aspects_instruction_response, |
|
instruction_column_response, |
|
response_column_response, |
|
) |
|
elif eval_type == "custom": |
|
df = evaluate_custom(df, aspects_custom, prompt_template, structured_output) |
|
return df |
|
|
|
|
|
def apply_to_sample_dataset( |
|
repo_id: str, |
|
eval_type: str, |
|
aspects_instruction: list[str], |
|
aspects_instruction_response: list[str], |
|
aspects_custom: list[str], |
|
instruction_instruction: str, |
|
instruction_instruction_response: str, |
|
response_instruction_response: str, |
|
prompt_template: str, |
|
structured_output: dict, |
|
): |
|
df, _, _, _ = load_dataset_from_hub(repo_id, n_rows=10) |
|
df = _apply_to_dataset( |
|
df, |
|
eval_type, |
|
aspects_instruction, |
|
instruction_instruction, |
|
aspects_instruction_response, |
|
instruction_instruction_response, |
|
response_instruction_response, |
|
aspects_custom, |
|
prompt_template, |
|
structured_output, |
|
) |
|
return df |
|
|
|
|
|
def push_to_hub( |
|
org_name: str, |
|
repo_name: str, |
|
private: bool, |
|
n_rows: int, |
|
original_repo_id: str, |
|
eval_type: str, |
|
aspects_instruction: list[str], |
|
aspects_instruction_response: list[str], |
|
aspects_custom: list[str], |
|
instruction_instruction: str, |
|
instruction_instruction_response: str, |
|
response_instruction_response: str, |
|
prompt_template: str, |
|
structured_output: dict, |
|
): |
|
df, _, _, _ = load_dataset_from_hub(original_repo_id, n_rows=n_rows) |
|
df = _apply_to_dataset( |
|
df, |
|
eval_type, |
|
aspects_instruction, |
|
instruction_instruction, |
|
aspects_instruction_response, |
|
instruction_instruction_response, |
|
response_instruction_response, |
|
aspects_custom, |
|
prompt_template, |
|
structured_output, |
|
) |
|
new_repo_id = f"{org_name}/{repo_name}" |
|
print(df) |
|
|
|
|
|
with gr.Blocks() as app: |
|
gr.Markdown("## Select your input dataset") |
|
gr.HTML("<hr>") |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
search_in = HuggingfaceHubSearch( |
|
label="Search", |
|
placeholder="Search for a Dataset", |
|
search_type="dataset", |
|
sumbit_on_select=True, |
|
) |
|
load_btn = gr.Button("Load Dataset") |
|
with gr.Column(scale=3): |
|
search_out = gr.HTML(label="Dataset Preview") |
|
|
|
gr.Markdown("## Configure your task") |
|
gr.HTML("<hr>") |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
eval_type = gr.Dropdown( |
|
label="Evaluation Type", |
|
choices=["instruction", "instruction-response", "custom"], |
|
visible=False, |
|
) |
|
with gr.Tab("instruction") as tab_instruction: |
|
aspects_instruction = define_evaluation_aspects("instruction") |
|
instruction_instruction = gr.Dropdown( |
|
label="Instruction Column", interactive=True |
|
) |
|
tab_instruction.select( |
|
lambda: "instruction", |
|
inputs=[], |
|
outputs=[eval_type], |
|
) |
|
with gr.Tab("instruction-response") as tab_instruction_response: |
|
aspects_instruction_response = define_evaluation_aspects( |
|
"instruction-response" |
|
) |
|
instruction_instruction_response = gr.Dropdown( |
|
label="Instruction Column", interactive=True |
|
) |
|
response_instruction_response = gr.Dropdown( |
|
label="Response Column", interactive=True |
|
) |
|
tab_instruction_response.select( |
|
lambda: "instruction-response", |
|
inputs=[], |
|
outputs=[eval_type], |
|
) |
|
with gr.Tab("custom") as tab_custom: |
|
aspects_custom = define_evaluation_aspects("custom") |
|
prompt_template = gr.Code( |
|
label="Prompt Template", |
|
value="{{column_1}} based on {{column_2}}", |
|
language="markdown", |
|
interactive=True, |
|
) |
|
structured_output = gr.Code( |
|
label="Structured Output", |
|
value=json.dumps({"eval_aspect": "str"}), |
|
language="json", |
|
interactive=True, |
|
) |
|
tab_custom.select( |
|
lambda: "custom", |
|
inputs=[], |
|
outputs=[eval_type], |
|
) |
|
btn_apply_to_sample_dataset = gr.Button("Refresh dataset") |
|
with gr.Column(scale=3): |
|
dataframe = gr.Dataframe() |
|
|
|
gr.Markdown("## Generate your dataset") |
|
gr.HTML("<hr>") |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
org_name = get_org_dropdown() |
|
repo_name = gr.Textbox( |
|
label="Repo name", |
|
placeholder="dataset_name", |
|
value="my-distiset", |
|
interactive=True, |
|
) |
|
n_rows = gr.Number( |
|
label="Number of rows", |
|
value=10, |
|
interactive=True, |
|
scale=1, |
|
) |
|
private = gr.Checkbox( |
|
label="Private dataset", |
|
value=False, |
|
interactive=True, |
|
scale=1, |
|
) |
|
btn_push_to_hub = gr.Button("Push to Hub", variant="primary", scale=2) |
|
with gr.Column(scale=3): |
|
success_message = gr.Markdown(visible=False) |
|
|
|
search_in.submit(get_iframe, inputs=search_in, outputs=search_out) |
|
load_btn.click( |
|
load_dataset_from_hub, |
|
inputs=[search_in], |
|
outputs=[ |
|
dataframe, |
|
instruction_instruction, |
|
instruction_instruction_response, |
|
response_instruction_response, |
|
], |
|
) |
|
btn_apply_to_sample_dataset.click( |
|
apply_to_sample_dataset, |
|
inputs=[ |
|
search_in, |
|
eval_type, |
|
aspects_instruction, |
|
aspects_instruction_response, |
|
aspects_custom, |
|
instruction_instruction, |
|
instruction_instruction_response, |
|
response_instruction_response, |
|
prompt_template, |
|
structured_output, |
|
], |
|
outputs=dataframe, |
|
) |
|
btn_push_to_hub.click( |
|
push_to_hub, |
|
inputs=[ |
|
org_name, |
|
repo_name, |
|
private, |
|
n_rows, |
|
search_in, |
|
eval_type, |
|
aspects_instruction, |
|
aspects_instruction_response, |
|
aspects_custom, |
|
instruction_instruction, |
|
instruction_instruction_response, |
|
response_instruction_response, |
|
prompt_template, |
|
structured_output, |
|
], |
|
outputs=success_message, |
|
) |
|
app.load(fn=get_org_dropdown, outputs=[org_name]) |
|
|