Ben Burtenshaw
commited on
Commit
Β·
0ac0929
1
Parent(s):
01af24e
fix expose pages on parent app
Browse files- domain.py +0 -89
- infer.py +0 -18
- pages/2_π©πΌβπ¬ Describe Domain.py +0 -281
- pages/3_π± Generate Dataset.py +0 -257
- pages/4_π Review Generated Data.py +0 -48
- pipeline.py +0 -208
- requirements.txt +0 -4
domain.py
DELETED
@@ -1,89 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
from typing import Any, Dict, List
|
3 |
-
|
4 |
-
from distilabel.steps.tasks.typing import ChatType
|
5 |
-
from distilabel.steps.tasks.text_generation import TextGeneration
|
6 |
-
from distilabel.steps import StepInput, StepOutput, Step
|
7 |
-
|
8 |
-
from dotenv import load_dotenv
|
9 |
-
|
10 |
-
from defaults import (
|
11 |
-
DEFAULT_DOMAIN,
|
12 |
-
DEFAULT_PERSPECTIVES,
|
13 |
-
DEFAULT_TOPICS,
|
14 |
-
DEFAULT_EXAMPLES,
|
15 |
-
DEFAULT_SYSTEM_PROMPT,
|
16 |
-
N_PERSPECTIVES,
|
17 |
-
N_TOPICS,
|
18 |
-
N_EXAMPLES,
|
19 |
-
)
|
20 |
-
|
21 |
-
load_dotenv()
|
22 |
-
|
23 |
-
# Application description used for SelfInstruct
|
24 |
-
APPLICATION_DESCRIPTION = f"""You are an AI assistant than generates queries around the domain of {DEFAULT_DOMAIN}.
|
25 |
-
Your should not expect basic but profound questions from your users.
|
26 |
-
The queries should reflect a diversity of vision and economic positions and political positions.
|
27 |
-
The queries may know about different methods of {DEFAULT_DOMAIN}.
|
28 |
-
The queries can be positioned politically, economically, socially, or practically.
|
29 |
-
Also take into account the impact of diverse causes on diverse domains."""
|
30 |
-
|
31 |
-
|
32 |
-
TOPICS = DEFAULT_TOPICS[:N_TOPICS]
|
33 |
-
PERSPECTIVES = DEFAULT_PERSPECTIVES[:N_PERSPECTIVES]
|
34 |
-
EXAMPLES = DEFAULT_EXAMPLES[:N_EXAMPLES]
|
35 |
-
|
36 |
-
|
37 |
-
def create_examples_template(examples: List[Dict[str, str]]) -> List[str]:
|
38 |
-
questions = """ Examples of high quality questions:"""
|
39 |
-
answers = """ Examples of high quality answers:"""
|
40 |
-
for example in examples:
|
41 |
-
questions += f"""\n- Question: {example["question"]}\n"""
|
42 |
-
answers += f"""\n- Answer: {example["answer"]}\n"""
|
43 |
-
|
44 |
-
_template: str = (
|
45 |
-
"""{instruction}\nThis is the the instruction.\n Examples: """
|
46 |
-
+ questions
|
47 |
-
+ answers
|
48 |
-
)
|
49 |
-
return _template
|
50 |
-
|
51 |
-
|
52 |
-
def create_topics(topics: List[str], positions: List[str]) -> List[str]:
|
53 |
-
return [
|
54 |
-
f"{topic} from a {position} perspective"
|
55 |
-
for topic in topics
|
56 |
-
for position in positions
|
57 |
-
]
|
58 |
-
|
59 |
-
|
60 |
-
class DomainExpert(TextGeneration):
|
61 |
-
"""A customized task to generate text as a domain expert in the domain of farming and agriculture."""
|
62 |
-
|
63 |
-
_system_prompt: (str) = DEFAULT_SYSTEM_PROMPT
|
64 |
-
_template: str = """{instruction}\nThis is the the instruction.\n Examples: """
|
65 |
-
|
66 |
-
def format_input(self, input: Dict[str, Any]) -> "ChatType":
|
67 |
-
return [
|
68 |
-
{
|
69 |
-
"role": "system",
|
70 |
-
"content": self._system_prompt,
|
71 |
-
},
|
72 |
-
{
|
73 |
-
"role": "user",
|
74 |
-
"content": self._template.format(**input),
|
75 |
-
},
|
76 |
-
]
|
77 |
-
|
78 |
-
|
79 |
-
class CleanNumberedList(Step):
|
80 |
-
"""A step to clean the numbered list of questions."""
|
81 |
-
|
82 |
-
def process(self, inputs: StepInput) -> StepOutput:
|
83 |
-
import re
|
84 |
-
|
85 |
-
pattern = r"^\d+\.\s"
|
86 |
-
|
87 |
-
for input in inputs:
|
88 |
-
input["question"] = re.sub(pattern, "", input["question"])
|
89 |
-
yield inputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
infer.py
DELETED
@@ -1,18 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import requests
|
3 |
-
|
4 |
-
API_URL = (
|
5 |
-
"https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2"
|
6 |
-
)
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
def query(question, hub_token: str):
|
13 |
-
payload = {
|
14 |
-
"inputs": question,
|
15 |
-
}
|
16 |
-
headers = {"Authorization": f"Bearer {hub_token}"}
|
17 |
-
response = requests.post(API_URL, headers=headers, json=payload)
|
18 |
-
return response.json()[0]["generated_text"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pages/2_π©πΌβπ¬ Describe Domain.py
DELETED
@@ -1,281 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
|
3 |
-
import streamlit as st
|
4 |
-
|
5 |
-
from hub import push_dataset_to_hub
|
6 |
-
from infer import query
|
7 |
-
from defaults import (
|
8 |
-
DEFAULT_DOMAIN,
|
9 |
-
DEFAULT_PERSPECTIVES,
|
10 |
-
DEFAULT_TOPICS,
|
11 |
-
DEFAULT_EXAMPLES,
|
12 |
-
DEFAULT_SYSTEM_PROMPT,
|
13 |
-
N_PERSPECTIVES,
|
14 |
-
N_TOPICS,
|
15 |
-
SEED_DATA_PATH,
|
16 |
-
PIPELINE_PATH,
|
17 |
-
DATASET_REPO_ID,
|
18 |
-
)
|
19 |
-
from utils import project_sidebar
|
20 |
-
|
21 |
-
st.set_page_config(
|
22 |
-
page_title="Domain Data Grower",
|
23 |
-
page_icon="π§βπΎ",
|
24 |
-
)
|
25 |
-
project_sidebar()
|
26 |
-
|
27 |
-
################################################################################
|
28 |
-
# HEADER
|
29 |
-
################################################################################
|
30 |
-
|
31 |
-
st.header("π§βπΎ Domain Data Grower")
|
32 |
-
st.divider()
|
33 |
-
st.subheader(
|
34 |
-
"Step 2. Define the specific domain that you want to generate synthetic data for.",
|
35 |
-
)
|
36 |
-
st.write(
|
37 |
-
"Define the project details, including the project name, domain, and API credentials"
|
38 |
-
)
|
39 |
-
|
40 |
-
################################################################################
|
41 |
-
# Domain Expert Section
|
42 |
-
################################################################################
|
43 |
-
|
44 |
-
(
|
45 |
-
tab_domain_expert,
|
46 |
-
tab_domain_perspectives,
|
47 |
-
tab_domain_topics,
|
48 |
-
tab_examples,
|
49 |
-
tab_raw_seed,
|
50 |
-
) = st.tabs(
|
51 |
-
tabs=[
|
52 |
-
"π©πΌβπ¬ Domain Expert",
|
53 |
-
"π Domain Perspectives",
|
54 |
-
"πΈοΈ Domain Topics",
|
55 |
-
"π Examples",
|
56 |
-
"π± Raw Seed Data",
|
57 |
-
]
|
58 |
-
)
|
59 |
-
|
60 |
-
with tab_domain_expert:
|
61 |
-
st.text("Define the domain expertise that you want to train a language model")
|
62 |
-
st.info(
|
63 |
-
"A domain expert is a person who is an expert in a particular field or area. For example, a domain expert in farming would be someone who has extensive knowledge and experience in farming and agriculture."
|
64 |
-
)
|
65 |
-
|
66 |
-
domain = st.text_input("Domain Name", DEFAULT_DOMAIN)
|
67 |
-
|
68 |
-
domain_expert_prompt = st.text_area(
|
69 |
-
label="Domain Expert Definition",
|
70 |
-
value=DEFAULT_SYSTEM_PROMPT,
|
71 |
-
height=200,
|
72 |
-
)
|
73 |
-
|
74 |
-
################################################################################
|
75 |
-
# Domain Perspectives
|
76 |
-
################################################################################
|
77 |
-
|
78 |
-
with tab_domain_perspectives:
|
79 |
-
st.text("Define the different perspectives from which the domain can be viewed")
|
80 |
-
st.info(
|
81 |
-
"""
|
82 |
-
Perspectives are different viewpoints or angles from which a domain can be viewed.
|
83 |
-
For example, the domain of farming can be viewed from the perspective of a commercial
|
84 |
-
farmer or an independent family farmer."""
|
85 |
-
)
|
86 |
-
|
87 |
-
perspectives = st.session_state.get(
|
88 |
-
"perspectives",
|
89 |
-
[DEFAULT_PERSPECTIVES[0]],
|
90 |
-
)
|
91 |
-
perspectives_container = st.container()
|
92 |
-
|
93 |
-
perspectives = [
|
94 |
-
perspectives_container.text_input(
|
95 |
-
f"Domain Perspective {i + 1}", value=perspective
|
96 |
-
)
|
97 |
-
for i, perspective in enumerate(perspectives)
|
98 |
-
]
|
99 |
-
|
100 |
-
if st.button("Add Perspective", key="add_perspective"):
|
101 |
-
n = len(perspectives)
|
102 |
-
value = DEFAULT_PERSPECTIVES[n] if n < N_PERSPECTIVES else ""
|
103 |
-
perspectives.append(
|
104 |
-
perspectives_container.text_input(f"Domain Perspective {n + 1}", value="")
|
105 |
-
)
|
106 |
-
|
107 |
-
st.session_state["perspectives"] = perspectives
|
108 |
-
|
109 |
-
|
110 |
-
################################################################################
|
111 |
-
# Domain Topics
|
112 |
-
################################################################################
|
113 |
-
|
114 |
-
with tab_domain_topics:
|
115 |
-
st.text("Define the main themes or subjects that are relevant to the domain")
|
116 |
-
st.info(
|
117 |
-
"""Topics are the main themes or subjects that are relevant to the domain. For example, the domain of farming can have topics like soil health, crop rotation, or livestock management."""
|
118 |
-
)
|
119 |
-
topics = st.session_state.get(
|
120 |
-
"topics",
|
121 |
-
[DEFAULT_TOPICS[0]],
|
122 |
-
)
|
123 |
-
topics_container = st.container()
|
124 |
-
topics = [
|
125 |
-
topics_container.text_input(f"Domain Topic {i + 1}", value=topic)
|
126 |
-
for i, topic in enumerate(topics)
|
127 |
-
]
|
128 |
-
|
129 |
-
if st.button("Add Topic", key="add_topic"):
|
130 |
-
n = len(topics)
|
131 |
-
value = DEFAULT_TOPICS[n] if n < N_TOPICS else ""
|
132 |
-
topics.append(topics_container.text_input(f"Domain Topics {n + 1}", value=""))
|
133 |
-
|
134 |
-
st.session_state["topics"] = topics
|
135 |
-
|
136 |
-
|
137 |
-
################################################################################
|
138 |
-
# Examples Section
|
139 |
-
################################################################################
|
140 |
-
|
141 |
-
with tab_examples:
|
142 |
-
st.text(
|
143 |
-
"Add high-quality questions and answers that can be used to generate synthetic data"
|
144 |
-
)
|
145 |
-
st.info(
|
146 |
-
"""
|
147 |
-
Examples are high-quality questions and answers that can be used to generate
|
148 |
-
synthetic data for the domain. These examples will be used to train the language model
|
149 |
-
to generate questions and answers.
|
150 |
-
"""
|
151 |
-
)
|
152 |
-
|
153 |
-
examples = st.session_state.get(
|
154 |
-
"examples",
|
155 |
-
[
|
156 |
-
{
|
157 |
-
"question": "",
|
158 |
-
"answer": "",
|
159 |
-
}
|
160 |
-
],
|
161 |
-
)
|
162 |
-
|
163 |
-
for n, example in enumerate(examples, 1):
|
164 |
-
question = example["question"]
|
165 |
-
answer = example["answer"]
|
166 |
-
examples_container = st.container()
|
167 |
-
question_column, answer_column = examples_container.columns(2)
|
168 |
-
|
169 |
-
if st.button(f"Generate Answer {n}"):
|
170 |
-
if st.session_state["hub_token"] is None:
|
171 |
-
st.error("Please provide a Hub token to generate answers")
|
172 |
-
else:
|
173 |
-
answer = query(question, st.session_state["hub_token"])
|
174 |
-
with question_column:
|
175 |
-
question = st.text_area(f"Question {n}", value=question)
|
176 |
-
|
177 |
-
with answer_column:
|
178 |
-
answer = st.text_area(f"Answer {n}", value=answer)
|
179 |
-
examples[n - 1] = {"question": question, "answer": answer}
|
180 |
-
st.session_state["examples"] = examples
|
181 |
-
st.divider()
|
182 |
-
|
183 |
-
if st.button("Add Example"):
|
184 |
-
examples.append({"question": "", "answer": ""})
|
185 |
-
st.session_state["examples"] = examples
|
186 |
-
st.rerun()
|
187 |
-
|
188 |
-
################################################################################
|
189 |
-
# Save Domain Data
|
190 |
-
################################################################################
|
191 |
-
|
192 |
-
perspectives = list(filter(None, perspectives))
|
193 |
-
topics = list(filter(None, topics))
|
194 |
-
|
195 |
-
domain_data = {
|
196 |
-
"domain": domain,
|
197 |
-
"perspectives": perspectives,
|
198 |
-
"topics": topics,
|
199 |
-
"examples": examples,
|
200 |
-
"domain_expert_prompt": domain_expert_prompt,
|
201 |
-
}
|
202 |
-
|
203 |
-
with open(SEED_DATA_PATH, "w") as f:
|
204 |
-
json.dump(domain_data, f, indent=2)
|
205 |
-
|
206 |
-
with tab_raw_seed:
|
207 |
-
st.code(json.dumps(domain_data, indent=2), language="json", line_numbers=True)
|
208 |
-
|
209 |
-
################################################################################
|
210 |
-
# Setup Dataset on the Hub
|
211 |
-
################################################################################
|
212 |
-
|
213 |
-
st.divider()
|
214 |
-
|
215 |
-
hub_username = DATASET_REPO_ID.split("/")[0]
|
216 |
-
project_name = DATASET_REPO_ID.split("/")[1]
|
217 |
-
st.write("Define the dataset repo details on the Hub")
|
218 |
-
st.session_state["project_name"] = st.text_input("Project Name", project_name)
|
219 |
-
st.session_state["hub_username"] = st.text_input("Hub Username", hub_username)
|
220 |
-
st.session_state["hub_token"] = st.text_input("Hub Token", type="password", value=None)
|
221 |
-
|
222 |
-
if all(
|
223 |
-
(
|
224 |
-
st.session_state.get("project_name"),
|
225 |
-
st.session_state.get("hub_username"),
|
226 |
-
st.session_state.get("hub_token"),
|
227 |
-
)
|
228 |
-
):
|
229 |
-
st.success(f"Using the dataset repo {hub_username}/{project_name} on the Hub")
|
230 |
-
|
231 |
-
|
232 |
-
if st.button("π€ Push Dataset Seed") and all(
|
233 |
-
(
|
234 |
-
domain,
|
235 |
-
domain_expert_prompt,
|
236 |
-
perspectives,
|
237 |
-
topics,
|
238 |
-
questions_answers,
|
239 |
-
)
|
240 |
-
):
|
241 |
-
if all(
|
242 |
-
(
|
243 |
-
st.session_state.get("project_name"),
|
244 |
-
st.session_state.get("hub_username"),
|
245 |
-
st.session_state.get("hub_token"),
|
246 |
-
)
|
247 |
-
):
|
248 |
-
project_name = st.session_state["project_name"]
|
249 |
-
hub_username = st.session_state["hub_username"]
|
250 |
-
hub_token = st.session_state["hub_token"]
|
251 |
-
else:
|
252 |
-
st.error(
|
253 |
-
"Please create a dataset repo on the Hub before pushing the dataset seed"
|
254 |
-
)
|
255 |
-
st.stop()
|
256 |
-
|
257 |
-
push_dataset_to_hub(
|
258 |
-
domain_seed_data_path=SEED_DATA_PATH,
|
259 |
-
project_name=project_name,
|
260 |
-
domain=domain,
|
261 |
-
hub_username=hub_username,
|
262 |
-
hub_token=hub_token,
|
263 |
-
pipeline_path=PIPELINE_PATH,
|
264 |
-
)
|
265 |
-
|
266 |
-
st.success(
|
267 |
-
f"Dataset seed created and pushed to the Hub. Check it out [here](https://huggingface.co/datasets/{hub_username}/{project_name})"
|
268 |
-
)
|
269 |
-
|
270 |
-
st.write("You can now move on to runnning your distilabel pipeline.")
|
271 |
-
|
272 |
-
st.page_link(
|
273 |
-
page="pages/3_π± Generate Dataset.py",
|
274 |
-
label="Generate Dataset",
|
275 |
-
icon="π±",
|
276 |
-
)
|
277 |
-
|
278 |
-
else:
|
279 |
-
st.info(
|
280 |
-
"Please fill in all the required domain fields to push the dataset seed to the Hub"
|
281 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pages/3_π± Generate Dataset.py
DELETED
@@ -1,257 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
|
3 |
-
from hub import pull_seed_data_from_repo, push_pipeline_to_hub
|
4 |
-
from defaults import (
|
5 |
-
DEFAULT_SYSTEM_PROMPT,
|
6 |
-
PIPELINE_PATH,
|
7 |
-
PROJECT_NAME,
|
8 |
-
ARGILLA_URL,
|
9 |
-
HUB_USERNAME,
|
10 |
-
CODELESS_DISTILABEL,
|
11 |
-
)
|
12 |
-
from utils import project_sidebar
|
13 |
-
|
14 |
-
from pipeline import serialize_pipeline, run_pipeline, create_pipelines_run_command
|
15 |
-
|
16 |
-
st.set_page_config(
|
17 |
-
page_title="Domain Data Grower",
|
18 |
-
page_icon="π§βπΎ",
|
19 |
-
)
|
20 |
-
|
21 |
-
project_sidebar()
|
22 |
-
|
23 |
-
################################################################################
|
24 |
-
# HEADER
|
25 |
-
################################################################################
|
26 |
-
|
27 |
-
st.header("π§βπΎ Domain Data Grower")
|
28 |
-
st.divider()
|
29 |
-
st.subheader("Step 3. Run the pipeline to generate synthetic data")
|
30 |
-
st.write("Define the project repos and models that the pipeline will use.")
|
31 |
-
|
32 |
-
st.divider()
|
33 |
-
###############################################################
|
34 |
-
# CONFIGURATION
|
35 |
-
###############################################################
|
36 |
-
|
37 |
-
st.markdown("## Pipeline Configuration")
|
38 |
-
|
39 |
-
st.markdown("#### π€ Hub details to pull the seed data")
|
40 |
-
hub_username = st.text_input("Hub Username", HUB_USERNAME)
|
41 |
-
project_name = st.text_input("Project Name", PROJECT_NAME)
|
42 |
-
repo_id = f"{hub_username}/{project_name}"
|
43 |
-
hub_token = st.text_input("Hub Token", type="password")
|
44 |
-
|
45 |
-
st.divider()
|
46 |
-
|
47 |
-
st.markdown("#### π€ Inference configuration")
|
48 |
-
|
49 |
-
st.write(
|
50 |
-
"Add the url of the Huggingface inference API or endpoint that your pipeline should use. You can find compatible models here:"
|
51 |
-
)
|
52 |
-
|
53 |
-
with st.expander("π€ Recommended Models"):
|
54 |
-
st.write("All inference endpoint compatible models can be found via the link below")
|
55 |
-
st.link_button(
|
56 |
-
"π€ Inference compaptible models on the hub",
|
57 |
-
"https://huggingface.co/models?pipeline_tag=text-generation&other=endpoints_compatible&sort=trending",
|
58 |
-
)
|
59 |
-
st.write("πProjects with sufficient resources could take advantage of LLama3 70b")
|
60 |
-
st.code("https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-70B")
|
61 |
-
|
62 |
-
st.write("πͺ«Projects with less resources could take advantage of LLama 3 8b")
|
63 |
-
st.code("https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B")
|
64 |
-
|
65 |
-
st.write("πProjects with even less resources could take advantage of Phi-2")
|
66 |
-
st.code("https://api-inference.huggingface.co/models/microsoft/phi-2")
|
67 |
-
|
68 |
-
st.write("Note Hugggingface Pro gives access to more compute resources")
|
69 |
-
st.link_button(
|
70 |
-
"π€ Huggingface Pro",
|
71 |
-
"https://huggingface.co/pricing",
|
72 |
-
)
|
73 |
-
|
74 |
-
|
75 |
-
base_url = st.text_input(
|
76 |
-
label="Base URL for the Inference API",
|
77 |
-
value="https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta",
|
78 |
-
)
|
79 |
-
st.divider()
|
80 |
-
st.markdown("#### π¬ Argilla API details to push the generated dataset")
|
81 |
-
argilla_url = st.text_input("Argilla API URL", ARGILLA_URL)
|
82 |
-
argilla_api_key = st.text_input("Argilla API Key", "owner.apikey")
|
83 |
-
argilla_dataset_name = st.text_input("Argilla Dataset Name", project_name)
|
84 |
-
st.divider()
|
85 |
-
|
86 |
-
###############################################################
|
87 |
-
# LOCAL
|
88 |
-
###############################################################
|
89 |
-
|
90 |
-
st.markdown("## Run the pipeline")
|
91 |
-
|
92 |
-
st.write(
|
93 |
-
"Once you've defined the pipeline configuration, you can run the pipeline from your local machine."
|
94 |
-
)
|
95 |
-
|
96 |
-
if CODELESS_DISTILABEL:
|
97 |
-
st.write(
|
98 |
-
"""We recommend running the pipeline locally if you're planning on generating a large dataset. \
|
99 |
-
But running the pipeline on this space is a handy way to get started quickly. Your synthetic
|
100 |
-
samples will be pushed to Argilla and available for review.
|
101 |
-
"""
|
102 |
-
)
|
103 |
-
st.write(
|
104 |
-
"""If you're planning on running the pipeline on the space, be aware that it \
|
105 |
-
will take some time to complete and you will need to maintain a \
|
106 |
-
connection to the space."""
|
107 |
-
)
|
108 |
-
|
109 |
-
|
110 |
-
if st.button("π» Run pipeline locally", key="run_pipeline_local"):
|
111 |
-
if all(
|
112 |
-
[
|
113 |
-
argilla_api_key,
|
114 |
-
argilla_url,
|
115 |
-
base_url,
|
116 |
-
hub_username,
|
117 |
-
project_name,
|
118 |
-
hub_token,
|
119 |
-
argilla_dataset_name,
|
120 |
-
]
|
121 |
-
):
|
122 |
-
with st.spinner("Pulling seed data from the Hub..."):
|
123 |
-
try:
|
124 |
-
seed_data = pull_seed_data_from_repo(
|
125 |
-
repo_id=f"{hub_username}/{project_name}",
|
126 |
-
hub_token=hub_token,
|
127 |
-
)
|
128 |
-
except Exception:
|
129 |
-
st.error(
|
130 |
-
"Seed data not found. Please make sure you pushed the data seed in Step 2."
|
131 |
-
)
|
132 |
-
|
133 |
-
domain = seed_data["domain"]
|
134 |
-
perspectives = seed_data["perspectives"]
|
135 |
-
topics = seed_data["topics"]
|
136 |
-
examples = seed_data["examples"]
|
137 |
-
domain_expert_prompt = seed_data["domain_expert_prompt"]
|
138 |
-
|
139 |
-
with st.spinner("Serializing the pipeline configuration..."):
|
140 |
-
serialize_pipeline(
|
141 |
-
argilla_api_key=argilla_api_key,
|
142 |
-
argilla_dataset_name=argilla_dataset_name,
|
143 |
-
argilla_api_url=argilla_url,
|
144 |
-
topics=topics,
|
145 |
-
perspectives=perspectives,
|
146 |
-
pipeline_config_path=PIPELINE_PATH,
|
147 |
-
domain_expert_prompt=domain_expert_prompt or DEFAULT_SYSTEM_PROMPT,
|
148 |
-
hub_token=hub_token,
|
149 |
-
endpoint_base_url=base_url,
|
150 |
-
examples=examples,
|
151 |
-
)
|
152 |
-
push_pipeline_to_hub(
|
153 |
-
pipeline_path=PIPELINE_PATH,
|
154 |
-
hub_token=hub_token,
|
155 |
-
hub_username=hub_username,
|
156 |
-
project_name=project_name,
|
157 |
-
)
|
158 |
-
|
159 |
-
st.success(f"Pipeline configuration saved to {hub_username}/{project_name}")
|
160 |
-
|
161 |
-
st.info(
|
162 |
-
"To run the pipeline locally, you need to have the `distilabel` library installed. You can install it using the following command:"
|
163 |
-
)
|
164 |
-
st.text(
|
165 |
-
"Execute the following command to generate a synthetic dataset from the seed data:"
|
166 |
-
)
|
167 |
-
command_to_run = create_pipelines_run_command(
|
168 |
-
hub_token=hub_token,
|
169 |
-
pipeline_config_path=PIPELINE_PATH,
|
170 |
-
argilla_dataset_name=argilla_dataset_name,
|
171 |
-
argilla_api_key=argilla_api_key,
|
172 |
-
argilla_api_url=argilla_url,
|
173 |
-
)
|
174 |
-
st.code(
|
175 |
-
f"""
|
176 |
-
pip install git+https://github.com/argilla-io/distilabel.git
|
177 |
-
git clone https://huggingface.co/datasets/{hub_username}/{project_name}
|
178 |
-
cd {project_name}
|
179 |
-
pip install -r requirements.txt
|
180 |
-
{' '.join(["python"] + command_to_run[1:])}
|
181 |
-
""",
|
182 |
-
language="bash",
|
183 |
-
)
|
184 |
-
st.subheader(
|
185 |
-
"π©βπ If you want to access the pipeline and manipulate the locally, you can do:"
|
186 |
-
)
|
187 |
-
st.code(
|
188 |
-
"""
|
189 |
-
git clone https://github.com/huggingface/data-is-better-together
|
190 |
-
cd domain-specific-datasets
|
191 |
-
"""
|
192 |
-
)
|
193 |
-
else:
|
194 |
-
st.error("Please fill all the required fields.")
|
195 |
-
|
196 |
-
###############################################################
|
197 |
-
# SPACE
|
198 |
-
###############################################################
|
199 |
-
if CODELESS_DISTILABEL:
|
200 |
-
if st.button("π₯ Run pipeline right here, right now!"):
|
201 |
-
if all(
|
202 |
-
[
|
203 |
-
argilla_api_key,
|
204 |
-
argilla_url,
|
205 |
-
base_url,
|
206 |
-
hub_username,
|
207 |
-
project_name,
|
208 |
-
hub_token,
|
209 |
-
argilla_dataset_name,
|
210 |
-
]
|
211 |
-
):
|
212 |
-
with st.spinner("Pulling seed data from the Hub..."):
|
213 |
-
try:
|
214 |
-
seed_data = pull_seed_data_from_repo(
|
215 |
-
repo_id=f"{hub_username}/{project_name}",
|
216 |
-
hub_token=hub_token,
|
217 |
-
)
|
218 |
-
except Exception as e:
|
219 |
-
st.error(
|
220 |
-
"Seed data not found. Please make sure you pushed the data seed in Step 2."
|
221 |
-
)
|
222 |
-
|
223 |
-
domain = seed_data["domain"]
|
224 |
-
perspectives = seed_data["perspectives"]
|
225 |
-
topics = seed_data["topics"]
|
226 |
-
examples = seed_data["examples"]
|
227 |
-
domain_expert_prompt = seed_data["domain_expert_prompt"]
|
228 |
-
|
229 |
-
serialize_pipeline(
|
230 |
-
argilla_api_key=argilla_api_key,
|
231 |
-
argilla_dataset_name=argilla_dataset_name,
|
232 |
-
argilla_api_url=argilla_url,
|
233 |
-
topics=topics,
|
234 |
-
perspectives=perspectives,
|
235 |
-
pipeline_config_path=PIPELINE_PATH,
|
236 |
-
domain_expert_prompt=domain_expert_prompt or DEFAULT_SYSTEM_PROMPT,
|
237 |
-
hub_token=hub_token,
|
238 |
-
endpoint_base_url=base_url,
|
239 |
-
examples=examples,
|
240 |
-
)
|
241 |
-
|
242 |
-
with st.spinner("Starting the pipeline..."):
|
243 |
-
logs = run_pipeline(
|
244 |
-
pipeline_config_path=PIPELINE_PATH,
|
245 |
-
argilla_api_key=argilla_api_key,
|
246 |
-
argilla_api_url=argilla_url,
|
247 |
-
hub_token=hub_token,
|
248 |
-
argilla_dataset_name=argilla_dataset_name,
|
249 |
-
)
|
250 |
-
|
251 |
-
st.success(f"Pipeline started successfully! π")
|
252 |
-
|
253 |
-
with st.expander(label="View Logs", expanded=True):
|
254 |
-
for out in logs:
|
255 |
-
st.text(out)
|
256 |
-
else:
|
257 |
-
st.error("Please fill all the required fields.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pages/4_π Review Generated Data.py
DELETED
@@ -1,48 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
|
3 |
-
from defaults import PROJECT_NAME, ARGILLA_URL, DATASET_REPO_ID
|
4 |
-
from utils import project_sidebar
|
5 |
-
from hub import push_argilla_dataset_to_hub
|
6 |
-
|
7 |
-
st.set_page_config(
|
8 |
-
page_title="Domain Data Grower",
|
9 |
-
page_icon="π§βπΎ",
|
10 |
-
)
|
11 |
-
|
12 |
-
project_sidebar()
|
13 |
-
|
14 |
-
################################################################################
|
15 |
-
# HEADER
|
16 |
-
################################################################################
|
17 |
-
|
18 |
-
st.header("π§βπΎ Domain Data Grower")
|
19 |
-
st.divider()
|
20 |
-
|
21 |
-
st.write(
|
22 |
-
"""Once you have reviewed the synthetic data in Argilla, you can publish the
|
23 |
-
generated dataset to the Hub."""
|
24 |
-
)
|
25 |
-
|
26 |
-
|
27 |
-
################################################################################
|
28 |
-
# Configuration
|
29 |
-
################################################################################
|
30 |
-
|
31 |
-
st.divider()
|
32 |
-
st.write("π¬ Argilla API details to push the generated dataset")
|
33 |
-
argilla_url = st.text_input("Argilla API URL", ARGILLA_URL)
|
34 |
-
argilla_api_key = st.text_input("Argilla API Key", "owner.apikey")
|
35 |
-
argilla_dataset_name = st.text_input("Argilla Dataset Name", PROJECT_NAME)
|
36 |
-
dataset_repo_id = st.text_input("Dataset Repo ID", DATASET_REPO_ID)
|
37 |
-
st.divider()
|
38 |
-
|
39 |
-
if st.button("π Publish the generated dataset"):
|
40 |
-
with st.spinner("Publishing the generated dataset..."):
|
41 |
-
push_argilla_dataset_to_hub(
|
42 |
-
name=argilla_dataset_name,
|
43 |
-
repo_id=dataset_repo_id,
|
44 |
-
url=argilla_url,
|
45 |
-
api_key=argilla_api_key,
|
46 |
-
workspace="admin",
|
47 |
-
)
|
48 |
-
st.success("The generated dataset has been published to the Hub.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pipeline.py
DELETED
@@ -1,208 +0,0 @@
|
|
1 |
-
import subprocess
|
2 |
-
import sys
|
3 |
-
import time
|
4 |
-
from typing import List
|
5 |
-
|
6 |
-
from distilabel.steps.generators.data import LoadDataFromDicts
|
7 |
-
from distilabel.steps.expand import ExpandColumns
|
8 |
-
from distilabel.steps.keep import KeepColumns
|
9 |
-
from distilabel.steps.tasks.self_instruct import SelfInstruct
|
10 |
-
from distilabel.steps.tasks.evol_instruct.base import EvolInstruct
|
11 |
-
from distilabel.llms.huggingface import InferenceEndpointsLLM
|
12 |
-
from distilabel.pipeline import Pipeline
|
13 |
-
from distilabel.steps import TextGenerationToArgilla
|
14 |
-
from dotenv import load_dotenv
|
15 |
-
|
16 |
-
from domain import (
|
17 |
-
DomainExpert,
|
18 |
-
CleanNumberedList,
|
19 |
-
create_topics,
|
20 |
-
create_examples_template,
|
21 |
-
APPLICATION_DESCRIPTION,
|
22 |
-
)
|
23 |
-
|
24 |
-
load_dotenv()
|
25 |
-
|
26 |
-
|
27 |
-
def define_pipeline(
|
28 |
-
argilla_api_key: str,
|
29 |
-
argilla_api_url: str,
|
30 |
-
argilla_dataset_name: str,
|
31 |
-
topics: List[str],
|
32 |
-
perspectives: List[str],
|
33 |
-
domain_expert_prompt: str,
|
34 |
-
examples: List[dict],
|
35 |
-
hub_token: str,
|
36 |
-
endpoint_base_url: str,
|
37 |
-
):
|
38 |
-
"""Define the pipeline for the specific domain."""
|
39 |
-
|
40 |
-
terms = create_topics(topics, perspectives)
|
41 |
-
template = create_examples_template(examples)
|
42 |
-
with Pipeline("farming") as pipeline:
|
43 |
-
load_data = LoadDataFromDicts(
|
44 |
-
name="load_data",
|
45 |
-
data=[{"input": term} for term in terms],
|
46 |
-
batch_size=64,
|
47 |
-
)
|
48 |
-
llm = InferenceEndpointsLLM(
|
49 |
-
base_url=endpoint_base_url,
|
50 |
-
api_key=hub_token,
|
51 |
-
)
|
52 |
-
self_instruct = SelfInstruct(
|
53 |
-
name="self-instruct",
|
54 |
-
application_description=APPLICATION_DESCRIPTION,
|
55 |
-
num_instructions=5,
|
56 |
-
input_batch_size=8,
|
57 |
-
llm=llm,
|
58 |
-
)
|
59 |
-
|
60 |
-
evol_instruction_complexity = EvolInstruct(
|
61 |
-
name="evol_instruction_complexity",
|
62 |
-
llm=llm,
|
63 |
-
num_evolutions=2,
|
64 |
-
store_evolutions=True,
|
65 |
-
input_batch_size=8,
|
66 |
-
include_original_instruction=True,
|
67 |
-
input_mappings={"instruction": "question"},
|
68 |
-
)
|
69 |
-
|
70 |
-
expand_instructions = ExpandColumns(
|
71 |
-
name="expand_columns", columns={"instructions": "question"}
|
72 |
-
)
|
73 |
-
cleaner = CleanNumberedList(name="clean_numbered_list")
|
74 |
-
expand_evolutions = ExpandColumns(
|
75 |
-
name="expand_columns_evolved",
|
76 |
-
columns={"evolved_instructions": "evolved_questions"},
|
77 |
-
)
|
78 |
-
|
79 |
-
domain_expert = DomainExpert(
|
80 |
-
name="domain_expert",
|
81 |
-
llm=llm,
|
82 |
-
input_batch_size=8,
|
83 |
-
input_mappings={"instruction": "evolved_questions"},
|
84 |
-
output_mappings={"generation": "domain_expert_answer"},
|
85 |
-
)
|
86 |
-
|
87 |
-
domain_expert._system_prompt = domain_expert_prompt
|
88 |
-
domain_expert._template = template
|
89 |
-
|
90 |
-
keep_columns = KeepColumns(
|
91 |
-
name="keep_columns",
|
92 |
-
columns=["model_name", "evolved_questions", "domain_expert_answer"],
|
93 |
-
)
|
94 |
-
|
95 |
-
to_argilla = TextGenerationToArgilla(
|
96 |
-
name="text_generation_to_argilla",
|
97 |
-
dataset_name=argilla_dataset_name,
|
98 |
-
dataset_workspace="admin",
|
99 |
-
api_url=argilla_api_url,
|
100 |
-
api_key=argilla_api_key,
|
101 |
-
input_mappings={
|
102 |
-
"instruction": "evolved_questions",
|
103 |
-
"generation": "domain_expert_answer",
|
104 |
-
},
|
105 |
-
)
|
106 |
-
|
107 |
-
load_data.connect(self_instruct)
|
108 |
-
self_instruct.connect(expand_instructions)
|
109 |
-
expand_instructions.connect(cleaner)
|
110 |
-
cleaner.connect(evol_instruction_complexity)
|
111 |
-
evol_instruction_complexity.connect(expand_evolutions)
|
112 |
-
expand_evolutions.connect(domain_expert)
|
113 |
-
domain_expert.connect(keep_columns)
|
114 |
-
keep_columns.connect(to_argilla)
|
115 |
-
return pipeline
|
116 |
-
|
117 |
-
|
118 |
-
def serialize_pipeline(
|
119 |
-
argilla_api_key: str,
|
120 |
-
argilla_api_url: str,
|
121 |
-
argilla_dataset_name: str,
|
122 |
-
topics: List[str],
|
123 |
-
perspectives: List[str],
|
124 |
-
domain_expert_prompt: str,
|
125 |
-
hub_token: str,
|
126 |
-
endpoint_base_url: str,
|
127 |
-
pipeline_config_path: str = "pipeline.yaml",
|
128 |
-
examples: List[dict] = [],
|
129 |
-
):
|
130 |
-
"""Serialize the pipeline to a yaml file."""
|
131 |
-
pipeline = define_pipeline(
|
132 |
-
argilla_api_key=argilla_api_key,
|
133 |
-
argilla_api_url=argilla_api_url,
|
134 |
-
argilla_dataset_name=argilla_dataset_name,
|
135 |
-
topics=topics,
|
136 |
-
perspectives=perspectives,
|
137 |
-
domain_expert_prompt=domain_expert_prompt,
|
138 |
-
hub_token=hub_token,
|
139 |
-
endpoint_base_url=endpoint_base_url,
|
140 |
-
examples=examples,
|
141 |
-
)
|
142 |
-
pipeline.save(path=pipeline_config_path, overwrite=True, format="yaml")
|
143 |
-
|
144 |
-
|
145 |
-
def create_pipelines_run_command(
|
146 |
-
hub_token: str,
|
147 |
-
argilla_api_key: str,
|
148 |
-
argilla_api_url: str,
|
149 |
-
pipeline_config_path: str = "pipeline.yaml",
|
150 |
-
argilla_dataset_name: str = "domain_specific_datasets",
|
151 |
-
):
|
152 |
-
"""Create the command to run the pipeline."""
|
153 |
-
command_to_run = [
|
154 |
-
sys.executable,
|
155 |
-
"-m",
|
156 |
-
"distilabel",
|
157 |
-
"pipeline",
|
158 |
-
"run",
|
159 |
-
"--config",
|
160 |
-
pipeline_config_path,
|
161 |
-
"--param",
|
162 |
-
f"text_generation_to_argilla.dataset_name={argilla_dataset_name}",
|
163 |
-
"--param",
|
164 |
-
f"text_generation_to_argilla.api_key={argilla_api_key}",
|
165 |
-
"--param",
|
166 |
-
f"text_generation_to_argilla.api_url={argilla_api_url}",
|
167 |
-
"--param",
|
168 |
-
f"self-instruct.llm.api_key={hub_token}",
|
169 |
-
"--param",
|
170 |
-
f"evol_instruction_complexity.llm.api_key={hub_token}",
|
171 |
-
"--param",
|
172 |
-
f"domain_expert.llm.api_key={hub_token}",
|
173 |
-
"--ignore-cache",
|
174 |
-
]
|
175 |
-
return command_to_run
|
176 |
-
|
177 |
-
|
178 |
-
def run_pipeline(
|
179 |
-
hub_token: str,
|
180 |
-
argilla_api_key: str,
|
181 |
-
argilla_api_url: str,
|
182 |
-
pipeline_config_path: str = "pipeline.yaml",
|
183 |
-
argilla_dataset_name: str = "domain_specific_datasets",
|
184 |
-
):
|
185 |
-
"""Run the pipeline and yield the output as a generator of logs."""
|
186 |
-
|
187 |
-
command_to_run = create_pipelines_run_command(
|
188 |
-
hub_token=hub_token,
|
189 |
-
pipeline_config_path=pipeline_config_path,
|
190 |
-
argilla_dataset_name=argilla_dataset_name,
|
191 |
-
argilla_api_key=argilla_api_key,
|
192 |
-
argilla_api_url=argilla_api_url,
|
193 |
-
)
|
194 |
-
|
195 |
-
# Run the script file
|
196 |
-
process = subprocess.Popen(
|
197 |
-
args=command_to_run,
|
198 |
-
stdout=subprocess.PIPE,
|
199 |
-
stderr=subprocess.PIPE,
|
200 |
-
env={"HF_TOKEN": hub_token},
|
201 |
-
)
|
202 |
-
|
203 |
-
while process.stdout and process.stdout.readable():
|
204 |
-
time.sleep(0.2)
|
205 |
-
line = process.stdout.readline()
|
206 |
-
if not line:
|
207 |
-
break
|
208 |
-
yield line.decode("utf-8")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,8 +1,4 @@
|
|
1 |
datasets
|
2 |
python_dotenv
|
3 |
-
sentence_transformers
|
4 |
streamlit
|
5 |
huggingface_hub
|
6 |
-
mistralai
|
7 |
-
argilla
|
8 |
-
git+https://github.com/argilla-io/distilabel.git
|
|
|
1 |
datasets
|
2 |
python_dotenv
|
|
|
3 |
streamlit
|
4 |
huggingface_hub
|
|
|
|
|
|