import transformers import librosa import gradio as gr import spaces pipe = transformers.pipeline( model='sarvamai/shuka_v1', trust_remote_code=True, device=0, torch_dtype='bfloat16' ) @spaces.GPU(duration=120) def transcribe_and_respond(audio_file): audio, sr = librosa.load(audio_file, sr=16000) turns = [ {'role': 'system', 'content': 'Respond naturally and informatively.'}, {'role': 'user', 'content': ''} ] response = pipe({'audio': audio, 'turns': turns, 'sampling_rate': sr}, max_new_tokens=512) return response iface = gr.Interface( fn=transcribe_and_respond, inputs=gr.Audio(source="microphone", type="filepath"), # Use the microphone for audio input outputs="text", # The output will be a text response title="Voice Input for Transcription and Response", description="Record your voice, and the model will respond naturally and informatively." ) iface.launch()