File size: 2,481 Bytes
1418942
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01d0bc8
 
1418942
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from transformers import pipeline
import numpy as np
import gradio as gr

HEXACO = [
    "honesty-humility",
    "emotionality",
    "extraversion",
    "agreeableness",
    "conscientiousness",
    "openness to experience"
]

def netScores(tagList: list, sequence_to_classify: str, modelName: str) -> dict:
    classifier = pipeline("zero-shot-classification", model=modelName)
    hypothesis_template_pos = "This example is {}"
    hypothesis_template_neg = "This example is not {}"
    output_pos = classifier(sequence_to_classify, tagList, hypothesis_template=hypothesis_template_pos, multi_label=True)
    output_neg = classifier(sequence_to_classify, tagList, hypothesis_template=hypothesis_template_neg, multi_label=True)

    positive_scores = {}
    for x in range(len(tagList)):
        positive_scores[output_pos["labels"][x]] = output_pos["scores"][x]

    negative_scores = {}
    for x in range(len(tagList)):
        negative_scores[output_neg["labels"][x]] = output_neg["scores"][x]

    pos_neg_scores = {}
    for tag in tagList:
        pos_neg_scores[tag] = [positive_scores[tag],negative_scores[tag]]
    
    net_scores = {}
    for tag in tagList:
        net_scores[tag] = positive_scores[tag]-negative_scores[tag]

    net_scores = dict(sorted(net_scores.items(), key=lambda x:x[1], reverse=True))

    return net_scores

def scoresMatch(tagList: list, scoresA: dict, scoresB: dict):
    maxDistance = 2*np.sqrt(len(tagList))
    differenceSquares = []
    for tag in tagList:
        difference = (scoresA[tag] - scoresB[tag])
        differenceSquare = difference*difference
        differenceSquares.append(differenceSquare)
    distance = np.sqrt(np.sum(differenceSquares))
    percentDifference = distance/maxDistance
    
    return 1-percentDifference

def compareTextAndLabels (userText, userLabels):
    userLabelsArray = userLabels.split(",")
    labelsMatches = {}
    
    textScores = netScores (HEXACO, userText, 'akhtet/mDeBERTa-v3-base-myXNLI')
    for label in userLabelsArray:
        labelScores = netScores (HEXACO, label, 'akhtet/mDeBERTa-v3-base-myXNLI')
        labelMatch = scoresMatch(HEXACO, textScores, labelScores)
        labelsMatches[label] = str(np.round(labelMatch*100,2))+"%"
    
    return labelsMatches

               
demo = gr.Interface(
    fn=compareTextAndLabels,
    inputs=[gr.Textbox(label="Text"), gr.Textbox(label="Tags (separated by commas)")],
    outputs=[gr.Textbox(label="Tag Scores")],
)
demo.launch()