from transformers import AutoTokenizer, AutoModelForCausalLM import os # خواندن توکن از متغیر محیطی token = os.getenv('HF_TOKEN') tokenizer = AutoTokenizer.from_pretrained("huggingface/falcon-7b-instruct", use_auth_token=token) # مدل‌های مختلف AI models = { 'falcon': "huggingface/falcon-7b-instruct", 'gpt_neox': "EleutherAI/gpt-neox-20b", 'persian': "HooshvareLab/bert-fa-zwnj-base", 'math': "EleutherAI/gpt-neox-20b-math" # مدل ریاضی (باید ایجاد شود یا از مدل‌های مشابه استفاده کنید) } # بارگذاری مدل‌ها از Hugging Face tokenizers = {name: AutoTokenizer.from_pretrained(path) for name, path in models.items()} models = {name: AutoModelForCausalLM.from_pretrained(path) for name, path in models.items()} def generate_response(prompt, model_name="falcon"): tokenizer = tokenizers[model_name] model = models[model_name] inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(inputs["input_ids"], max_length=100, num_return_sequences=1) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response # نمونه استفاده prompt = "سلام، امروز چه خبر؟" response_falcon = generate_response(prompt, model_name="falcon") response_gpt_neox = generate_response(prompt, model_name="gpt_neox") response_persian = generate_response(prompt, model_name="persian") print("Falcon Response:", response_falcon) print("GPT-NeoX Response:", response_gpt_neox) print("Persian Response:", response_persian)