import pandas as pd from pathlib import Path import typer def process_csv( input_dir: Path, output_file: Path, event_type_filter: str = 'egv', drop_duplicates: bool = True, time_diff_minutes: int = 1, chunk_size: int = 1000, ) -> pd.DataFrame: # Read CSV file into a DataFrame df = pd.read_csv(input_dir, low_memory=False) # Filter by Event Type and Event Subtype df = df[df['Event Type'].str.lower() == event_type_filter] df = df[df['Event Subtype'].isna()] # List of columns to keep columns_to_keep = [ 'Index', 'Timestamp (YYYY-MM-DDThh:mm:ss)', 'Glucose Value (mg/dL)', ] # Keep only the specified columns df = df[columns_to_keep] # Rename columns column_rename = { 'Index': 'id', 'Timestamp (YYYY-MM-DDThh:mm:ss)': 'time', 'Glucose Value (mg/dL)': 'gl' } df = df.rename(columns=column_rename) df['id'] = df['id'].astype(int) df = df.dropna(subset=['id']) # Drops rows where the index is NaN # Handle id assignment based on chunk_size if chunk_size is None or chunk_size == 0: df['id'] = 1 # Assign the same id to all rows else: df['id'] = (df.index // chunk_size).astype(int) # Convert timestamp to datetime df['time'] = pd.to_datetime(df['time']) # Calculate time difference and keep rows with at least the specified time difference df['time_diff'] = df['time'].diff() df = df[df['time_diff'].isna() | (df['time_diff'] >= pd.Timedelta(minutes=time_diff_minutes))] # Drop the temporary time_diff column df = df.drop(columns=['time_diff']) # Ensure glucose values are in float64 df['gl'] = df['gl'].astype('float64') # Optionally drop duplicate rows based on time if drop_duplicates: df = df.drop_duplicates(subset=['time'], keep='first') # Write the modified dataframe to a new CSV file df.to_csv(output_file, index=False) #typer.echo("CSV file has been successfully processed.") return df ''' def process_multiple_csv( input_dir: Path = typer.Argument('./raw_data/livia_unmerged', help="Directory containing the input CSV files."), output_file: Path = typer.Argument('./raw_data/livia_unmerged/livia_mini.csv', help="Path to save the processed CSV file."), event_type_filter: str = typer.Option('egv', help="Event type to filter by."), drop_duplicates: bool = typer.Option(True, help="Whether to drop duplicate timestamps."), time_diff_minutes: int = typer.Option(1, help="Minimum time difference in minutes to keep a row."), chunk_size: int = typer.Option(1000, help="Chunk size for the 'id' column increment. Set to 0 or None for a single id."), ): # Get all the CSV files in the specified directory all_files = list(input_dir.glob("*.csv")) # List to store the DataFrames df_list = [] # Read each CSV file into a DataFrame and append to the list for filename in all_files: df = pd.read_csv(filename, low_memory=False) df_list.append(df) # Concatenate all DataFrames in the list combined_df = pd.concat(df_list, ignore_index=True) # Filter by Event Type and Event Subtype combined_df = combined_df[combined_df['Event Type'].str.lower() == event_type_filter] combined_df = combined_df[combined_df['Event Subtype'].isna()] # List of columns to keep columns_to_keep = [ 'Index', 'Timestamp (YYYY-MM-DDThh:mm:ss)', 'Glucose Value (mg/dL)', ] # Keep only the specified columns combined_df = combined_df[columns_to_keep] # Rename columns column_rename = { 'Index': 'id', 'Timestamp (YYYY-MM-DDThh:mm:ss)': 'time', 'Glucose Value (mg/dL)': 'gl' } combined_df = combined_df.rename(columns=column_rename) # Sort the combined DataFrame by timestamp combined_df = combined_df.sort_values('time') # Handle id assignment based on chunk_size if chunk_size is None or chunk_size == 0: combined_df['id'] = 1 # Assign the same id to all rows else: combined_df['id'] = ((combined_df.index // chunk_size) % (combined_df.index.max() // chunk_size + 1)).astype(int) # Convert timestamp to datetime combined_df['time'] = pd.to_datetime(combined_df['time']) # Calculate time difference and keep rows with at least the specified time difference combined_df['time_diff'] = combined_df['time'].diff() combined_df = combined_df[combined_df['time_diff'].isna() | (combined_df['time_diff'] >= pd.Timedelta(minutes=time_diff_minutes))] # Drop the temporary time_diff column combined_df = combined_df.drop(columns=['time_diff']) # Ensure glucose values are in float64 combined_df['gl'] = combined_df['gl'].astype('float64') # Optionally drop duplicate rows based on time if drop_duplicates: combined_df = combined_df.drop_duplicates(subset=['time'], keep='first') # Write the modified dataframe to a new CSV file combined_df.to_csv(output_file, index=False) typer.echo("CSV files have been successfully merged, modified, and saved.") ''' if __name__ == "__main__": typer.run(process_csv)