Livia_Zaharia
added code for the first time
bacf16b
raw
history blame
2.47 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
class PositionalEmbedding(nn.Module):
def __init__(self, d_model, max_len=5000):
super(PositionalEmbedding, self).__init__()
# Compute the positional encodings once in log space.
pos_emb = torch.zeros(max_len, d_model)
pos_emb.require_grad = False
position = torch.arange(0, max_len).unsqueeze(1)
div_term = (torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model)).exp()
pos_emb[:, 0::2] = torch.sin(position * div_term)
pos_emb[:, 1::2] = torch.cos(position * div_term)
pos_emb = pos_emb.unsqueeze(0)
self.register_buffer('pos_emb', pos_emb)
def forward(self, x):
return self.pos_emb[:, :x.size(1)]
class TokenEmbedding(nn.Module):
def __init__(self, d_model):
super(TokenEmbedding, self).__init__()
D_INP = 1 # one sequence
self.conv = nn.Conv1d(in_channels=D_INP, out_channels=d_model,
kernel_size=3, padding=1, padding_mode='circular')
# nn.init.kaiming_normal_(self.conv.weight, mode='fan_in', nonlinearity='leaky_relu')
def forward(self, x):
x = self.conv(x.transpose(-1, 1)).transpose(-1, 1)
return x
class TemporalEmbedding(nn.Module):
def __init__(self, d_model, num_features):
super(TemporalEmbedding, self).__init__()
self.embed = nn.Linear(num_features, d_model)
def forward(self, x):
return self.embed(x)
class SubjectEmbedding(nn.Module):
def __init__(self, d_model, num_features):
super(SubjectEmbedding, self).__init__()
self.id_embedding = nn.Linear(num_features, d_model)
def forward(self, x):
embed_x = self.id_embedding(x)
return embed_x
class DataEmbedding(nn.Module):
def __init__(self, d_model, r_drop, num_dynamic_features, num_static_features):
super(DataEmbedding, self).__init__()
# note: d_model // 2 == 0
self.value_embedding = TokenEmbedding(d_model)
self.time_embedding = TemporalEmbedding(d_model, num_dynamic_features) # alternative: TimeFeatureEmbedding
self.positional_embedding = PositionalEmbedding(d_model)
self.subject_embedding = SubjectEmbedding(d_model, num_static_features)
self.dropout = nn.Dropout(r_drop)
def forward(self, x_id, x, x_mark):
x = self.value_embedding(x) + self.positional_embedding(x) + self.time_embedding(x_mark)
x_id = self.subject_embedding(x_id)
x = torch.cat((x_id.unsqueeze(1), x), dim = 1)
return self.dropout(x)