|
""" |
|
GPT2 Language Models: |
|
-------------------------- |
|
|
|
""" |
|
|
|
|
|
import os |
|
|
|
import torch |
|
|
|
from textattack.shared import utils |
|
|
|
from .language_model_constraint import LanguageModelConstraint |
|
|
|
|
|
os.environ["WANDB_SILENT"] = "1" |
|
|
|
|
|
class GPT2(LanguageModelConstraint): |
|
"""A constraint based on the GPT-2 language model. |
|
|
|
from "Better Language Models and Their Implications" |
|
(openai.com/blog/better-language-models/) |
|
|
|
Args: |
|
model_name: id of GPT2 model |
|
""" |
|
|
|
def __init__(self, model_name="gpt2", **kwargs): |
|
import transformers |
|
|
|
|
|
os.environ["WANDB_SILENT"] = "0" |
|
self.model = transformers.GPT2LMHeadModel.from_pretrained(model_name) |
|
self.model.to(utils.device) |
|
self.tokenizer = transformers.GPT2Tokenizer.from_pretrained(model_name) |
|
super().__init__(**kwargs) |
|
|
|
def get_log_probs_at_index(self, text_list, word_index): |
|
"""Gets the probability of the word at index `word_index` according to |
|
GPT-2. |
|
|
|
Assumes that all items in `text_list` have the same prefix up |
|
until `word_index`. |
|
""" |
|
prefix = text_list[0].text_until_word_index(word_index) |
|
|
|
if not utils.has_letter(prefix): |
|
|
|
|
|
|
|
return torch.zeros(len(text_list), dtype=torch.float) |
|
|
|
token_ids = self.tokenizer.encode(prefix) |
|
tokens_tensor = torch.tensor([token_ids]) |
|
tokens_tensor = tokens_tensor.to(utils.device) |
|
|
|
with torch.no_grad(): |
|
outputs = self.model(tokens_tensor) |
|
predictions = outputs[0] |
|
|
|
probs = [] |
|
for attacked_text in text_list: |
|
next_word_ids = self.tokenizer.encode(attacked_text.words[word_index]) |
|
next_word_prob = predictions[0, -1, next_word_ids[0]] |
|
probs.append(next_word_prob) |
|
|
|
return probs |
|
|