File size: 13,425 Bytes
4943752
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
"""
ModelArgs Class
===============
"""


from dataclasses import dataclass
import json
import os

import transformers

import textattack
from textattack.shared.utils import ARGS_SPLIT_TOKEN, load_module_from_file

HUGGINGFACE_MODELS = {
    #
    # bert-base-uncased
    #
    "bert-base-uncased": "bert-base-uncased",
    "bert-base-uncased-ag-news": "textattack/bert-base-uncased-ag-news",
    "bert-base-uncased-cola": "textattack/bert-base-uncased-CoLA",
    "bert-base-uncased-imdb": "textattack/bert-base-uncased-imdb",
    "bert-base-uncased-mnli": "textattack/bert-base-uncased-MNLI",
    "bert-base-uncased-mrpc": "textattack/bert-base-uncased-MRPC",
    "bert-base-uncased-qnli": "textattack/bert-base-uncased-QNLI",
    "bert-base-uncased-qqp": "textattack/bert-base-uncased-QQP",
    "bert-base-uncased-rte": "textattack/bert-base-uncased-RTE",
    "bert-base-uncased-sst2": "textattack/bert-base-uncased-SST-2",
    "bert-base-uncased-stsb": "textattack/bert-base-uncased-STS-B",
    "bert-base-uncased-wnli": "textattack/bert-base-uncased-WNLI",
    "bert-base-uncased-mr": "textattack/bert-base-uncased-rotten-tomatoes",
    "bert-base-uncased-snli": "textattack/bert-base-uncased-snli",
    "bert-base-uncased-yelp": "textattack/bert-base-uncased-yelp-polarity",
    #
    # distilbert-base-cased
    #
    "distilbert-base-uncased": "distilbert-base-uncased",
    "distilbert-base-cased-cola": "textattack/distilbert-base-cased-CoLA",
    "distilbert-base-cased-mrpc": "textattack/distilbert-base-cased-MRPC",
    "distilbert-base-cased-qqp": "textattack/distilbert-base-cased-QQP",
    "distilbert-base-cased-snli": "textattack/distilbert-base-cased-snli",
    "distilbert-base-cased-sst2": "textattack/distilbert-base-cased-SST-2",
    "distilbert-base-cased-stsb": "textattack/distilbert-base-cased-STS-B",
    "distilbert-base-uncased-ag-news": "textattack/distilbert-base-uncased-ag-news",
    "distilbert-base-uncased-cola": "textattack/distilbert-base-cased-CoLA",
    "distilbert-base-uncased-imdb": "textattack/distilbert-base-uncased-imdb",
    "distilbert-base-uncased-mnli": "textattack/distilbert-base-uncased-MNLI",
    "distilbert-base-uncased-mr": "textattack/distilbert-base-uncased-rotten-tomatoes",
    "distilbert-base-uncased-mrpc": "textattack/distilbert-base-uncased-MRPC",
    "distilbert-base-uncased-qnli": "textattack/distilbert-base-uncased-QNLI",
    "distilbert-base-uncased-rte": "textattack/distilbert-base-uncased-RTE",
    "distilbert-base-uncased-wnli": "textattack/distilbert-base-uncased-WNLI",
    #
    # roberta-base (RoBERTa is cased by default)
    #
    "roberta-base": "roberta-base",
    "roberta-base-ag-news": "textattack/roberta-base-ag-news",
    "roberta-base-cola": "textattack/roberta-base-CoLA",
    "roberta-base-imdb": "textattack/roberta-base-imdb",
    "roberta-base-mr": "textattack/roberta-base-rotten-tomatoes",
    "roberta-base-mrpc": "textattack/roberta-base-MRPC",
    "roberta-base-qnli": "textattack/roberta-base-QNLI",
    "roberta-base-rte": "textattack/roberta-base-RTE",
    "roberta-base-sst2": "textattack/roberta-base-SST-2",
    "roberta-base-stsb": "textattack/roberta-base-STS-B",
    "roberta-base-wnli": "textattack/roberta-base-WNLI",
    #
    # albert-base-v2 (ALBERT is cased by default)
    #
    "albert-base-v2": "albert-base-v2",
    "albert-base-v2-ag-news": "textattack/albert-base-v2-ag-news",
    "albert-base-v2-cola": "textattack/albert-base-v2-CoLA",
    "albert-base-v2-imdb": "textattack/albert-base-v2-imdb",
    "albert-base-v2-mr": "textattack/albert-base-v2-rotten-tomatoes",
    "albert-base-v2-rte": "textattack/albert-base-v2-RTE",
    "albert-base-v2-qqp": "textattack/albert-base-v2-QQP",
    "albert-base-v2-snli": "textattack/albert-base-v2-snli",
    "albert-base-v2-sst2": "textattack/albert-base-v2-SST-2",
    "albert-base-v2-stsb": "textattack/albert-base-v2-STS-B",
    "albert-base-v2-wnli": "textattack/albert-base-v2-WNLI",
    "albert-base-v2-yelp": "textattack/albert-base-v2-yelp-polarity",
    #
    # xlnet-base-cased
    #
    "xlnet-base-cased": "xlnet-base-cased",
    "xlnet-base-cased-cola": "textattack/xlnet-base-cased-CoLA",
    "xlnet-base-cased-imdb": "textattack/xlnet-base-cased-imdb",
    "xlnet-base-cased-mr": "textattack/xlnet-base-cased-rotten-tomatoes",
    "xlnet-base-cased-mrpc": "textattack/xlnet-base-cased-MRPC",
    "xlnet-base-cased-rte": "textattack/xlnet-base-cased-RTE",
    "xlnet-base-cased-stsb": "textattack/xlnet-base-cased-STS-B",
    "xlnet-base-cased-wnli": "textattack/xlnet-base-cased-WNLI",
}


#
# Models hosted by textattack.
# `models` vs `models_v2`: `models_v2` is simply a new dir in S3 that contains models' `config.json`.
# Fixes issue https://github.com/QData/TextAttack/issues/485
# Model parameters has not changed.
#
TEXTATTACK_MODELS = {
    #
    # LSTMs
    #
    "lstm-ag-news": "models_v2/classification/lstm/ag-news",
    "lstm-imdb": "models_v2/classification/lstm/imdb",
    "lstm-mr": "models_v2/classification/lstm/mr",
    "lstm-sst2": "models_v2/classification/lstm/sst2",
    "lstm-yelp": "models_v2/classification/lstm/yelp",
    #
    # CNNs
    #
    "cnn-ag-news": "models_v2/classification/cnn/ag-news",
    "cnn-imdb": "models_v2/classification/cnn/imdb",
    "cnn-mr": "models_v2/classification/cnn/rotten-tomatoes",
    "cnn-sst2": "models_v2/classification/cnn/sst",
    "cnn-yelp": "models_v2/classification/cnn/yelp",
    #
    # T5 for translation
    #
    "t5-en-de": "english_to_german",
    "t5-en-fr": "english_to_french",
    "t5-en-ro": "english_to_romanian",
    #
    # T5 for summarization
    #
    "t5-summarization": "summarization",
}


@dataclass
class ModelArgs:
    """Arguments for loading base/pretrained or trained models."""

    model: str = None
    model_from_file: str = None
    model_from_huggingface: str = None

    @classmethod
    def _add_parser_args(cls, parser):
        """Adds model-related arguments to an argparser."""
        model_group = parser.add_mutually_exclusive_group()

        model_names = list(HUGGINGFACE_MODELS.keys()) + list(TEXTATTACK_MODELS.keys())
        model_group.add_argument(
            "--model",
            type=str,
            required=False,
            default=None,
            help="Name of or path to a pre-trained TextAttack model to load. Choices: "
            + str(model_names),
        )
        model_group.add_argument(
            "--model-from-file",
            type=str,
            required=False,
            help="File of model and tokenizer to import.",
        )
        model_group.add_argument(
            "--model-from-huggingface",
            type=str,
            required=False,
            help="Name of or path of pre-trained HuggingFace model to load.",
        )

        return parser

    @classmethod
    def _create_model_from_args(cls, args):
        """Given ``ModelArgs``, return specified
        ``textattack.models.wrappers.ModelWrapper`` object."""

        assert isinstance(
            args, cls
        ), f"Expect args to be of type `{type(cls)}`, but got type `{type(args)}`."

        if args.model_from_file:
            # Support loading the model from a .py file where a model wrapper
            # is instantiated.
            colored_model_name = textattack.shared.utils.color_text(
                args.model_from_file, color="blue", method="ansi"
            )
            textattack.shared.logger.info(
                f"Loading model and tokenizer from file: {colored_model_name}"
            )
            if ARGS_SPLIT_TOKEN in args.model_from_file:
                model_file, model_name = args.model_from_file.split(ARGS_SPLIT_TOKEN)
            else:
                _, model_name = args.model_from_file, "model"
            try:
                model_module = load_module_from_file(args.model_from_file)
            except Exception:
                raise ValueError(f"Failed to import file {args.model_from_file}.")
            try:
                model = getattr(model_module, model_name)
            except AttributeError:
                raise AttributeError(
                    f"Variable `{model_name}` not found in module {args.model_from_file}."
                )

            if not isinstance(model, textattack.models.wrappers.ModelWrapper):
                raise TypeError(
                    f"Variable `{model_name}` must be of type "
                    f"``textattack.models.ModelWrapper``, got type {type(model)}."
                )
        elif (args.model in HUGGINGFACE_MODELS) or args.model_from_huggingface:
            # Support loading models automatically from the HuggingFace model hub.

            model_name = (
                HUGGINGFACE_MODELS[args.model]
                if (args.model in HUGGINGFACE_MODELS)
                else args.model_from_huggingface
            )
            colored_model_name = textattack.shared.utils.color_text(
                model_name, color="blue", method="ansi"
            )
            textattack.shared.logger.info(
                f"Loading pre-trained model from HuggingFace model repository: {colored_model_name}"
            )
            model = transformers.AutoModelForSequenceClassification.from_pretrained(
                model_name
            )
            tokenizer = transformers.AutoTokenizer.from_pretrained(
                model_name, use_fast=True
            )
            model = textattack.models.wrappers.HuggingFaceModelWrapper(model, tokenizer)
        elif args.model in TEXTATTACK_MODELS:
            # Support loading TextAttack pre-trained models via just a keyword.
            colored_model_name = textattack.shared.utils.color_text(
                args.model, color="blue", method="ansi"
            )
            if args.model.startswith("lstm"):
                textattack.shared.logger.info(
                    f"Loading pre-trained TextAttack LSTM: {colored_model_name}"
                )
                model = textattack.models.helpers.LSTMForClassification.from_pretrained(
                    args.model
                )
            elif args.model.startswith("cnn"):
                textattack.shared.logger.info(
                    f"Loading pre-trained TextAttack CNN: {colored_model_name}"
                )
                model = (
                    textattack.models.helpers.WordCNNForClassification.from_pretrained(
                        args.model
                    )
                )
            elif args.model.startswith("t5"):
                model = textattack.models.helpers.T5ForTextToText.from_pretrained(
                    args.model
                )
            else:
                raise ValueError(f"Unknown textattack model {args.model}")

            # Choose the approprate model wrapper (based on whether or not this is
            # a HuggingFace model).
            if isinstance(model, textattack.models.helpers.T5ForTextToText):
                model = textattack.models.wrappers.HuggingFaceModelWrapper(
                    model, model.tokenizer
                )
            else:
                model = textattack.models.wrappers.PyTorchModelWrapper(
                    model, model.tokenizer
                )
        elif args.model and os.path.exists(args.model):
            # Support loading TextAttack-trained models via just their folder path.
            # If `args.model` is a path/directory, let's assume it was a model
            # trained with textattack, and try and load it.
            if os.path.exists(os.path.join(args.model, "t5-wrapper-config.json")):
                model = textattack.models.helpers.T5ForTextToText.from_pretrained(
                    args.model
                )
                model = textattack.models.wrappers.HuggingFaceModelWrapper(
                    model, model.tokenizer
                )
            elif os.path.exists(os.path.join(args.model, "config.json")):
                with open(os.path.join(args.model, "config.json")) as f:
                    config = json.load(f)
                model_class = config["architectures"]
                if (
                    model_class == "LSTMForClassification"
                    or model_class == "WordCNNForClassification"
                ):
                    model = eval(
                        f"textattack.models.helpers.{model_class}.from_pretrained({args.model})"
                    )
                    model = textattack.models.wrappers.PyTorchModelWrapper(
                        model, model.tokenizer
                    )
                else:
                    # assume the model is from HuggingFace.
                    model = (
                        transformers.AutoModelForSequenceClassification.from_pretrained(
                            args.model
                        )
                    )
                    tokenizer = transformers.AutoTokenizer.from_pretrained(
                        args.model, use_fast=True
                    )
                    model = textattack.models.wrappers.HuggingFaceModelWrapper(
                        model, tokenizer
                    )
        else:
            raise ValueError(f"Error: unsupported TextAttack model {args.model}")

        assert isinstance(
            model, textattack.models.wrappers.ModelWrapper
        ), "`model` must be of type `textattack.models.wrappers.ModelWrapper`."
        return model