File size: 12,015 Bytes
4943752
 
 
 
 
 
4f6b345
 
4943752
 
ecdc8b8
 
 
 
 
 
 
 
d65ddc0
ecdc8b8
4943752
4f6b345
4943752
ecdc8b8
4943752
 
 
 
 
ecdc8b8
 
 
 
 
04b0636
 
4f6b345
4943752
 
4f6b345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecdc8b8
4f6b345
 
 
 
 
 
4943752
 
ecdc8b8
 
 
4943752
ecdc8b8
 
 
 
 
 
 
 
 
 
 
4943752
 
ecdc8b8
 
 
4943752
ecdc8b8
4f6b345
 
ecdc8b8
4f6b345
 
ecdc8b8
4943752
ecdc8b8
 
 
 
 
 
 
4943752
ecdc8b8
4943752
 
 
 
ecdc8b8
 
 
 
4943752
 
ecdc8b8
 
 
 
 
 
 
 
 
4943752
 
 
 
 
 
ecdc8b8
 
 
 
 
 
 
 
 
 
 
 
 
4943752
 
4f6b345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6bde4a
4f6b345
 
ecdc8b8
 
4f6b345
 
b6bde4a
4f6b345
ecdc8b8
4f6b345
 
b6bde4a
4f6b345
ecdc8b8
4f6b345
 
 
 
 
 
 
 
 
 
 
b6bde4a
4f6b345
 
ecdc8b8
4f6b345
ecdc8b8
4943752
4f6b345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecdc8b8
 
4f6b345
ecdc8b8
4f6b345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecdc8b8
 
4f6b345
4943752
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import os
import zipfile

import gradio as gr
import nltk
import pandas as pd
import requests
from flask import Flask

from anonymous_demo import TADCheckpointManager
from textattack.attack_recipes import (
    BAEGarg2019,
    PWWSRen2019,
    TextFoolerJin2019,
    PSOZang2020,
    IGAWang2019,
    GeneticAlgorithmAlzantot2018,
    DeepWordBugGao2018,
    CLARE2020,
)
from textattack.attack_results import SuccessfulAttackResult
from utils import SentAttacker, get_agnews_example, get_sst2_example, get_amazon_example, get_imdb_example, diff_texts

nltk.download("omw-1.4")

sent_attackers = {}
tad_classifiers = {}

attack_recipes = {
    "bae": BAEGarg2019,
    "pwws": PWWSRen2019,
    "textfooler": TextFoolerJin2019,
    "pso": PSOZang2020,
    "iga": IGAWang2019,
    "ga": GeneticAlgorithmAlzantot2018,
    "deepwordbug": DeepWordBugGao2018,
    "clare": CLARE2020,
}

app = Flask(__name__)


def init():
    if not os.path.exists("TAD-SST2"):
        z = zipfile.ZipFile("checkpoints.zip", "r")
        z.extractall(os.getcwd())

    for attacker in ["pwws", "bae", "textfooler", "deepwordbug"]:
        for dataset in [
            "agnews10k",
            "amazon",
            "sst2",
            # 'imdb'
        ]:
            if "tad-{}".format(dataset) not in tad_classifiers:
                tad_classifiers[
                    "tad-{}".format(dataset)
                ] = TADCheckpointManager.get_tad_text_classifier(
                    "tad-{}".format(dataset).upper()
                )

            sent_attackers["tad-{}{}".format(dataset, attacker)] = SentAttacker(
                tad_classifiers["tad-{}".format(dataset)], attack_recipes[attacker]
            )
            tad_classifiers["tad-{}".format(dataset)].sent_attacker = sent_attackers[
                "tad-{}pwws".format(dataset)
            ]


cache = set()


def generate_adversarial_example(dataset, attacker, text=None, label=None):
    if not text or text in cache:
        if "agnews" in dataset.lower():
            text, label = get_agnews_example()
        elif "sst2" in dataset.lower():
            text, label = get_sst2_example()
        elif "amazon" in dataset.lower():
            text, label = get_amazon_example()
        elif "imdb" in dataset.lower():
            text, label = get_imdb_example()

    cache.add(text)

    result = None
    attack_result = sent_attackers[
        "tad-{}{}".format(dataset.lower(), attacker.lower())
    ].attacker.simple_attack(text, int(label))
    if isinstance(attack_result, SuccessfulAttackResult):
        if (
                attack_result.perturbed_result.output
                != attack_result.original_result.ground_truth_output
        ) and (
                attack_result.original_result.output
                == attack_result.original_result.ground_truth_output
        ):
            # with defense
            result = tad_classifiers["tad-{}".format(dataset.lower())].infer(
                attack_result.perturbed_result.attacked_text.text
                + "!ref!{},{},{}".format(
                    attack_result.original_result.ground_truth_output,
                    1,
                    attack_result.perturbed_result.output,
                ),
                print_result=True,
                defense="pwws",
            )

    if result:
        classification_df = {}
        classification_df["is_repaired"] = result["is_fixed"]
        classification_df["pred_label"] = result["label"]
        classification_df["confidence"] = round(result["confidence"], 3)
        classification_df["is_correct"] = result["ref_label_check"]

        advdetection_df = {}
        if result["is_adv_label"] != "0":
            advdetection_df["is_adversarial"] = {
                "0": False,
                "1": True,
                0: False,
                1: True,
            }[result["is_adv_label"]]
            advdetection_df["perturbed_label"] = result["perturbed_label"]
            advdetection_df["confidence"] = round(result["is_adv_confidence"], 3)
            # advdetection_df['ref_is_attack'] = result['ref_is_adv_label']
            # advdetection_df['is_correct'] = result['ref_is_adv_check']

    else:
        return generate_adversarial_example(dataset, attacker)

    return (
        text,
        label,
        result["restored_text"],
        result["label"],
        attack_result.perturbed_result.attacked_text.text,
        diff_texts(text, text),
        diff_texts(text, attack_result.perturbed_result.attacked_text.text),
        diff_texts(text, result["restored_text"]),
        attack_result.perturbed_result.output,
        pd.DataFrame(classification_df, index=[0]),
        pd.DataFrame(advdetection_df, index=[0]),
    )


def run_demo(dataset, attacker, text=None, label=None):

    try:
        data = {
            "dataset": dataset,
            "attacker": attacker,
            "text": text,
            "label": label,
        }
        response = requests.post('https://rpddemo.pagekite.me/api/generate_adversarial_example', json=data)
        result = response.json()
        print(response.json())
        return (
            result["text"],
            result["label"],
            result["restored_text"],
            result["result_label"],
            result["perturbed_text"],
            result["text_diff"],
            result["perturbed_diff"],
            result["restored_diff"],
            result["output"],
            pd.DataFrame(result["classification_df"]),
            pd.DataFrame(result["advdetection_df"]),
        )
    except Exception as e:
        print(e)
        return generate_adversarial_example(dataset, attacker, text, label)

if __name__ == "__main__":

    init()

    demo = gr.Blocks()

    with demo:
        gr.Markdown("<h1 align='center'>Reactive Perturbation Defocusing for Textual Adversarial Defense</h1>")
        gr.Markdown("<h3 align='center'>Clarifications</h2>")
        gr.Markdown("""
    - This demo has no mechanism to ensure the adversarial example will be correctly repaired by RPD. The repair success rate is actually the performance reported in the paper (approximately up to 97%).
    - The adversarial example and repaired adversarial example may be unnatural to read, while it is because the attackers usually generate unnatural perturbations. RPD does not introduce additional unnatural perturbations.
    - To our best knowledge, Reactive Perturbation Defocusing is a novel approach in adversarial defense. RPD significantly (>10% defense accuracy improvement) outperforms the state-of-the-art methods.
    - The DeepWordBug is an unknown attacker to the adversarial detector and reactive defense module. DeepWordBug has different attacking patterns from other attackers and shows the generalizability and robustness of RPD.
    - To help the review & evaluation of ACL2023, we will host this demo on a GPU device to speed up the inference process in the next month. Then it will be deployed on a CPU device in the future.
    """)
        gr.Markdown("<h2 align='center'>Natural Example Input</h2>")
        with gr.Group():
            with gr.Row():
                input_dataset = gr.Radio(
                    choices=["SST2", "AGNews10K", "Amazon"],
                    value="SST2",
                    label="Select a testing dataset and an adversarial attacker to generate an adversarial example.",
                )
                input_attacker = gr.Radio(
                    choices=["BAE", "PWWS", "TextFooler", "DeepWordBug"],
                    value="PWWS",
                    label="Choose an Adversarial Attacker for generating an adversarial example to attack the model.",
                )
            with gr.Group():
                with gr.Row():
                    input_sentence = gr.Textbox(
                        placeholder="Input a natural example...",
                        label="Alternatively, input a natural example and its original label to generate an adversarial example.",
                    )
                    input_label = gr.Textbox(
                        placeholder="Original label...", label="Original Label"
                    )

        button_gen = gr.Button(
            "Generate an adversarial example to repair using RPD (GPU: < 1 minute, CPU: 1-10 minutes)",
            variant="primary",
        )

        gr.Markdown("<h2 align='center'>Generated Adversarial Example and Repaired Adversarial Example</h2>")

        with gr.Column():
            with gr.Group():
                with gr.Row():
                    output_original_example = gr.Textbox(label="Original Example")
                    output_original_label = gr.Textbox(label="Original Label")
                with gr.Row():
                    output_adv_example = gr.Textbox(label="Adversarial Example")
                    output_adv_label = gr.Textbox(label="Predicted Label of the Adversarial Example")
                with gr.Row():
                    output_repaired_example = gr.Textbox(
                        label="Repaired Adversarial Example by RPD"
                    )
                    output_repaired_label = gr.Textbox(label="Predicted Label of the Repaired Adversarial Example")

        gr.Markdown("<h2 align='center'>Example Difference (Comparisons)</p>")
        gr.Markdown("""
    <p align='center'>The (+) and (-) in the boxes indicate the added and deleted characters in the adversarial example compared to the original input natural example.</p>
        """)
        ori_text_diff = gr.HighlightedText(
            label="The Original Natural Example",
            combine_adjacent=True,
        )
        adv_text_diff = gr.HighlightedText(
            label="Character Editions of Adversarial Example Compared to the Natural Example",
            combine_adjacent=True,
        )
        restored_text_diff = gr.HighlightedText(
            label="Character Editions of Repaired Adversarial Example Compared to the Natural Example",
            combine_adjacent=True,
        )

        gr.Markdown(
            "## <h2 align='center'>The Output of Reactive Perturbation Defocusing</p>"
        )
        with gr.Row():
            with gr.Column():
                with gr.Group():
                    output_is_adv_df = gr.DataFrame(
                        label="Adversarial Example Detection Result"
                    )
                    gr.Markdown(
                        "The is_adversarial field indicates if an adversarial example is detected. "
                        "The perturbed_label is the predicted label of the adversarial example. "
                        "The confidence field represents the confidence of the predicted adversarial example detection. "
                    )
            with gr.Column():
                with gr.Group():
                    output_df = gr.DataFrame(
                        label="Repaired Standard Classification Result"
                    )
                    gr.Markdown(
                        "If is_repaired=true, it has been repaired by RPD. "
                        "The pred_label field indicates the standard classification result. "
                        "The confidence field represents the confidence of the predicted label. "
                        "The is_correct field indicates whether the predicted label is correct."
                    )

        # Bind functions to buttons
        button_gen.click(
            fn=run_demo,
            inputs=[input_dataset, input_attacker, input_sentence, input_label],
            outputs=[
                output_original_example,
                output_original_label,
                output_repaired_example,
                output_repaired_label,
                output_adv_example,
                ori_text_diff,
                adv_text_diff,
                restored_text_diff,
                output_adv_label,
                output_df,
                output_is_adv_df,
            ],
        )

    demo.queue(2).launch()