Spaces:
Sleeping
Sleeping
andreasmartin
commited on
Commit
·
31d4f49
1
Parent(s):
b7c1815
deepnote update
Browse files- faq.py +31 -16
- requirements.txt +1 -0
faq.py
CHANGED
@@ -1,20 +1,22 @@
|
|
1 |
import pandas as pd
|
2 |
from langchain.document_loaders import DataFrameLoader
|
3 |
from langchain.embeddings import HuggingFaceEmbeddings
|
4 |
-
from langchain.vectorstores import AwaDB
|
5 |
from typing import List, Tuple
|
6 |
from langchain.docstore.document import Document
|
7 |
from langchain.embeddings.base import Embeddings
|
8 |
from langchain.vectorstores.base import VectorStore
|
9 |
import os
|
10 |
import shutil
|
|
|
11 |
|
12 |
SHEET_URL_X = "https://docs.google.com/spreadsheets/d/"
|
13 |
SHEET_URL_Y = "/edit#gid="
|
14 |
SHEET_URL_Y_EXPORT = "/export?gid="
|
15 |
-
|
16 |
VECTORDB_FOLDER = ".vectordb"
|
17 |
EMBEDDING_MODEL = "sentence-transformers/all-mpnet-base-v2"
|
|
|
18 |
|
19 |
|
20 |
def faq_id(sheet_url: str) -> str:
|
@@ -41,26 +43,39 @@ def define_embedding_function(model_name: str) -> HuggingFaceEmbeddings:
|
|
41 |
return HuggingFaceEmbeddings(
|
42 |
model_name=model_name,
|
43 |
encode_kwargs={"normalize_embeddings": True},
|
44 |
-
cache_folder=
|
45 |
)
|
46 |
|
47 |
|
48 |
def get_vectordb(
|
49 |
-
faq_id: str, embedding_function: Embeddings, documents: List[Document] = None
|
50 |
) -> VectorStore:
|
51 |
vectordb = None
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
return vectordb
|
65 |
|
66 |
|
|
|
1 |
import pandas as pd
|
2 |
from langchain.document_loaders import DataFrameLoader
|
3 |
from langchain.embeddings import HuggingFaceEmbeddings
|
4 |
+
from langchain.vectorstores import AwaDB, Chroma
|
5 |
from typing import List, Tuple
|
6 |
from langchain.docstore.document import Document
|
7 |
from langchain.embeddings.base import Embeddings
|
8 |
from langchain.vectorstores.base import VectorStore
|
9 |
import os
|
10 |
import shutil
|
11 |
+
from enum import Enum
|
12 |
|
13 |
SHEET_URL_X = "https://docs.google.com/spreadsheets/d/"
|
14 |
SHEET_URL_Y = "/edit#gid="
|
15 |
SHEET_URL_Y_EXPORT = "/export?gid="
|
16 |
+
EMBEDDING_MODEL_FOLDER = ".embedding-model"
|
17 |
VECTORDB_FOLDER = ".vectordb"
|
18 |
EMBEDDING_MODEL = "sentence-transformers/all-mpnet-base-v2"
|
19 |
+
VECTORDB_TYPE = Enum("VECTORDB_TYPE", ["AwaDB", "Chroma"])
|
20 |
|
21 |
|
22 |
def faq_id(sheet_url: str) -> str:
|
|
|
43 |
return HuggingFaceEmbeddings(
|
44 |
model_name=model_name,
|
45 |
encode_kwargs={"normalize_embeddings": True},
|
46 |
+
cache_folder=EMBEDDING_MODEL_FOLDER,
|
47 |
)
|
48 |
|
49 |
|
50 |
def get_vectordb(
|
51 |
+
faq_id: str, embedding_function: Embeddings, documents: List[Document] = None, vectordb_type: str = VECTORDB_TYPE.AwaDB
|
52 |
) -> VectorStore:
|
53 |
vectordb = None
|
54 |
+
|
55 |
+
if vectordb_type is VECTORDB_TYPE.AwaDB:
|
56 |
+
if documents is None:
|
57 |
+
vectordb = AwaDB(embedding=embedding_function, log_and_data_dir=VECTORDB_FOLDER)
|
58 |
+
if not vectordb.load_local(table_name=faq_id):
|
59 |
+
raise Exception("faq_id may not exists")
|
60 |
+
else:
|
61 |
+
vectordb = AwaDB.from_documents(
|
62 |
+
documents=documents,
|
63 |
+
embedding=embedding_function,
|
64 |
+
table_name=faq_id,
|
65 |
+
log_and_data_dir=VECTORDB_FOLDER,
|
66 |
+
)
|
67 |
+
if vectordb_type is VECTORDB_TYPE.Chroma:
|
68 |
+
if documents is None:
|
69 |
+
vectordb = Chroma(collection_name=faq_id, embedding_function=embedding_function, persist_directory=VECTORDB_FOLDER)
|
70 |
+
if not vectordb.get()["ids"]:
|
71 |
+
raise Exception("faq_id may not exists")
|
72 |
+
else:
|
73 |
+
vectordb = Chroma.from_documents(
|
74 |
+
documents=documents,
|
75 |
+
embedding=embedding_function,
|
76 |
+
collection_name=faq_id,
|
77 |
+
persist_directory=VECTORDB_FOLDER,
|
78 |
+
)
|
79 |
return vectordb
|
80 |
|
81 |
|
requirements.txt
CHANGED
@@ -2,6 +2,7 @@ openpyxl
|
|
2 |
langchain
|
3 |
sentence_transformers
|
4 |
awadb
|
|
|
5 |
fastapi
|
6 |
uvicorn
|
7 |
gradio==3.35.2
|
|
|
2 |
langchain
|
3 |
sentence_transformers
|
4 |
awadb
|
5 |
+
chromadb
|
6 |
fastapi
|
7 |
uvicorn
|
8 |
gradio==3.35.2
|