faq / util.py
andreasmartin's picture
deepnote update
0ddd09e
import pandas as pd
from langchain.docstore.document import Document
import re
SHEET_URL_X = "https://docs.google.com/spreadsheets/d/"
SHEET_URL_Y = "/edit#gid="
SHEET_URL_Y_EXPORT = "/export?gid="
SPLIT_PAGE_BREAKS = False
SYNONYMS = None
def get_id(sheet_url: str) -> str:
x = sheet_url.find(SHEET_URL_X)
y = sheet_url.find(SHEET_URL_Y)
return sheet_url[x + len(SHEET_URL_X) : y] + "-" + sheet_url[y + len(SHEET_URL_Y) :]
def xlsx_url(get_id: str) -> str:
y = get_id.rfind("-")
return SHEET_URL_X + get_id[0:y] + SHEET_URL_Y_EXPORT + get_id[y + 1 :]
def read_df(xlsx_url: str, page_content_column: str) -> pd.DataFrame:
df = pd.read_excel(xlsx_url, header=0, keep_default_na=False)
if SPLIT_PAGE_BREAKS:
df = split_page_breaks(df, page_content_column)
df = remove_empty_rows(df, page_content_column)
if SYNONYMS is not None:
df = duplicate_rows_with_synonyms(df, page_content_column, SYNONYMS)
return df
def split_page_breaks(df: pd.DataFrame, column_name: str) -> pd.DataFrame:
split_values = df[column_name].str.split("\n")
new_df = pd.DataFrame({column_name: split_values.explode()})
new_df.reset_index(drop=True, inplace=True)
column_order = df.columns
new_df = new_df.reindex(column_order, axis=1)
other_columns = column_order.drop(column_name)
for column in other_columns:
new_df[column] = (
df[column].repeat(split_values.str.len()).reset_index(drop=True)
)
return new_df
def transform_documents_to_dataframe(documents: Document) -> pd.DataFrame:
keys = []
values = {"document_score": [], "page_content": []}
for doc, score in documents:
for key, value in doc.metadata.items():
if key not in keys:
keys.append(key)
values[key] = []
values[key].append(value)
values["document_score"].append(score)
values["page_content"].append(doc.page_content)
return pd.DataFrame(values)
def remove_duplicates_by_column(df: pd.DataFrame, column_name: str) -> pd.DataFrame:
df.drop_duplicates(subset=column_name, inplace=True, ignore_index=True)
return df
def dataframe_to_dict(df: pd.DataFrame) -> dict:
df_records = df.to_dict(orient="records")
return df_records
def duplicate_rows_with_synonyms(df: pd.DataFrame, column: str, synonyms: list[list[str]]) -> pd.DataFrame:
new_rows = []
for index, row in df.iterrows():
new_rows.append(row)
text = row[column]
for synonym_list in synonyms:
for synonym in synonym_list:
pattern = r'(?i)\b({}(?:s|es|ed|ing)?)\b'.format(synonym)
if re.search(pattern, text):
for replacement in synonym_list:
if replacement != synonym:
new_row = row.copy()
new_row[column] = re.sub(pattern, replacement, text)
new_rows.append(new_row)
new_df = pd.DataFrame(new_rows, columns=df.columns)
new_df = new_df.reset_index(drop=True)
return new_df
def remove_empty_rows(df: pd.DataFrame, column_name: str) -> pd.DataFrame:
df = df[df[column_name].str.strip().astype(bool)]
df = df.reset_index(drop=True)
return df