faq / app.py
andreasmartin's picture
Fix
91bb24e unverified
from fastapi import FastAPI
from pydantic import BaseModel
import faq as faq
import util as util
import uvicorn
import gradio as gr
from typing import List, Optional
from fastapi.responses import JSONResponse
app = FastAPI()
class Request(BaseModel):
question: Optional[str] = "?"
sheet_url: str
page_content_column: str
k: Optional[int] = 20
reload_collection: Optional[bool] = False
id_column: Optional[str] = None
synonyms: Optional[List[List[str]]] = None
@app.post("/api")
async def post_api(request: Request) -> JSONResponse:
if request.id_column is not None:
util.SPLIT_PAGE_BREAKS = True
if request.synonyms is not None:
util.SYNONYMS = request.synonyms
vectordb = faq.load_vectordb(request.sheet_url, request.page_content_column)
if request.reload_collection:
faq.delete_vectordb_current_collection(vectordb)
vectordb = faq.load_vectordb(request.sheet_url, request.page_content_column)
documents = faq.similarity_search(vectordb, request.question, k=request.k)
df_doc = util.transform_documents_to_dataframe(documents)
if request.id_column is not None:
df_doc = util.remove_duplicates_by_column(df_doc, request.id_column)
return JSONResponse(util.dataframe_to_dict(df_doc))
@app.put("/api")
async def put_api(request: Request) -> bool:
success = False
if request.id_column is not None:
util.SPLIT_PAGE_BREAKS = True
if request.synonyms is not None:
util.SYNONYMS = request.synonyms
vectordb = faq.load_vectordb(request.sheet_url, request.page_content_column)
if request.reload_collection:
faq.delete_vectordb_current_collection(vectordb)
vectordb = faq.load_vectordb(request.sheet_url, request.page_content_column)
success = True
return success
@app.delete("/api")
async def delete_vectordb_api() -> None:
faq.delete_vectordb()
def ask(sheet_url: str, page_content_column: str, k: int, reload_collection: bool, question: str):
util.SPLIT_PAGE_BREAKS = False
vectordb = faq.load_vectordb(sheet_url, page_content_column)
if reload_collection:
faq.delete_vectordb_current_collection(vectordb)
vectordb = faq.load_vectordb(sheet_url, page_content_column)
documents = faq.similarity_search(vectordb, question, k=k)
df_doc = util.transform_documents_to_dataframe(documents)
return util.dataframe_to_dict(df_doc), gr.Checkbox.update(False)
with gr.Blocks() as block:
sheet_url = gr.Textbox(label="Google Sheet URL")
page_content_column = gr.Textbox(label="Question Column")
k = gr.Slider(1, 30, step=1, label="K")
reload_collection = gr.Checkbox(label="Reload Collection?")
question = gr.Textbox(label="Question")
ask_button = gr.Button("Ask")
answer_output = gr.JSON(label="Answer")
ask_button.click(
ask,
inputs=[sheet_url, page_content_column, k, reload_collection, question],
outputs=[answer_output, reload_collection]
)
app = gr.mount_gradio_app(app, block, path="/")
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)