Spaces:
Sleeping
Sleeping
import util as util | |
import pandas as pd | |
from langchain.document_loaders import DataFrameLoader | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import AwaDB, Chroma | |
from typing import List, Tuple | |
from langchain.docstore.document import Document | |
from langchain.embeddings.base import Embeddings | |
from langchain.vectorstores.base import VectorStore | |
import os | |
import shutil | |
from enum import Enum | |
EMBEDDING_MODEL_FOLDER = ".embedding-model" | |
VECTORDB_FOLDER = ".vectordb" | |
EMBEDDING_MODEL = "sentence-transformers/all-mpnet-base-v2" | |
VECTORDB_TYPES = Enum("VECTORDB_TYPES", ["AwaDB", "Chroma"]) | |
VECTORDB_TYPE = VECTORDB_TYPES.AwaDB | |
def create_documents(df: pd.DataFrame, page_content_column: str) -> pd.DataFrame: | |
loader = DataFrameLoader(df, page_content_column=page_content_column) | |
return loader.load() | |
def define_embedding_function(model_name: str) -> HuggingFaceEmbeddings: | |
return HuggingFaceEmbeddings( | |
model_name=model_name, | |
encode_kwargs={"normalize_embeddings": True}, | |
cache_folder=EMBEDDING_MODEL_FOLDER, | |
) | |
def get_vectordb( | |
collection_id: str, | |
embedding_function: Embeddings, | |
documents: List[Document] = None, | |
vectordb_type: str = VECTORDB_TYPE, | |
) -> VectorStore: | |
vectordb = None | |
if vectordb_type is VECTORDB_TYPES.AwaDB: | |
if documents is None: | |
vectordb = AwaDB( | |
embedding=embedding_function, log_and_data_dir=VECTORDB_FOLDER | |
) | |
if not vectordb.load_local(table_name=collection_id): | |
raise Exception("collection_id may not exists") | |
else: | |
vectordb = AwaDB.from_documents( | |
documents=documents, | |
embedding=embedding_function, | |
table_name=collection_id, | |
log_and_data_dir=VECTORDB_FOLDER, | |
) | |
if vectordb_type is VECTORDB_TYPES.Chroma: | |
if documents is None: | |
vectordb = Chroma( | |
collection_name=collection_id, | |
embedding_function=embedding_function, | |
persist_directory=VECTORDB_FOLDER, | |
) | |
if not vectordb.get()["ids"]: | |
raise Exception("collection_id may not exists") | |
else: | |
vectordb = Chroma.from_documents( | |
documents=documents, | |
embedding=embedding_function, | |
collection_name=collection_id, | |
persist_directory=VECTORDB_FOLDER, | |
) | |
vectordb.persist() | |
return vectordb | |
def similarity_search( | |
vectordb: VectorStore, query: str, k: int = 3 | |
) -> List[Tuple[Document, float]]: | |
os.environ["TOKENIZERS_PARALLELISM"] = "true" | |
return vectordb.similarity_search_with_relevance_scores(query=query, k=k) | |
def load_vectordb_id( | |
collection_id: str, | |
page_content_column: str, | |
embedding_function_name: str = EMBEDDING_MODEL, | |
) -> VectorStore: | |
embedding_function = define_embedding_function(embedding_function_name) | |
vectordb = None | |
try: | |
vectordb = get_vectordb(collection_id=collection_id, embedding_function=embedding_function) | |
except Exception as e: | |
print(e) | |
vectordb = create_vectordb_id(collection_id, page_content_column, embedding_function) | |
return vectordb | |
def create_vectordb_id( | |
collection_id: str, | |
page_content_column: str, | |
embedding_function: HuggingFaceEmbeddings = None, | |
) -> VectorStore: | |
if embedding_function is None: | |
embedding_function = define_embedding_function(EMBEDDING_MODEL) | |
df = util.read_df(util.xlsx_url(collection_id), page_content_column) | |
documents = create_documents(df, page_content_column) | |
vectordb = get_vectordb( | |
collection_id=collection_id, embedding_function=embedding_function, documents=documents | |
) | |
return vectordb | |
def load_vectordb(sheet_url: str, page_content_column: str) -> VectorStore: | |
return load_vectordb_id(util.get_id(sheet_url), page_content_column) | |
def delete_vectordb() -> None: | |
shutil.rmtree(VECTORDB_FOLDER, ignore_errors=True) | |
def delete_vectordb_current_collection(vectordb: VectorStore) -> None: | |
vectordb.delete_collection() | |
vectordb.persist() | |