moondream-05 / app.py
andito's picture
andito HF staff
changed the examples
d9061b4
import gradio as gr
from threading import Thread
from PIL import Image
import moondream as md
from huggingface_hub import hf_hub_download
# Download model at runtime
model_path = hf_hub_download(
repo_id="andito/moondream05",
filename="moondream-0_5b-int8.mf",
)
model = md.vl(model=model_path)
def model_inference(input_dict, history):
# Extract image from message if present
if input_dict.get("files"):
image_path = input_dict["files"][0]
if isinstance(image_path, dict) and "path" in image_path:
image_path = image_path["path"]
image = Image.open(image_path)
encoded_image = model.encode_image(image)
# If there's a question, use query
text = input_dict.get("text", "")
if text not in ["", "Caption"]:
response = model.query(encoded_image, text)["answer"]
# Otherwise generate a caption
else:
response = model.caption(encoded_image)["caption"]
return response
else:
return "Please provide an image to analyze."
examples=[
[{"text": "Caption", "files": ["example_images/demo-1.jpg"]}, []],
[{"text": "Caption", "files": ["example_images/demo-2.jpg"]}, []],
[{"text": "What art era do this artpiece belong to?", "files": ["example_images/rococo.jpg"]}, []],
[{"text": "Caption", "files": ["example_images/rococo.jpg"]}, []],
[{"text": "I'm planning a visit to this temple, give me travel tips.", "files": ["example_images/examples_wat_arun.jpg"]}, []],
[{"text": "Caption", "files": ["example_images/examples_wat_arun.jpg"]}, []],
[{"text": "Caption", "files": ["example_images/aaron.jpeg"]}, []],
]
demo = gr.ChatInterface(fn=model_inference, title="Moondream 0.5B: The World's Smallest Vision-Language Model",
description="Play with [Moondream 0.5B](https://huggingface.co/vikhyatk/moondream2) in this demo. To get started, upload an image and text or try one of the examples.",
examples=examples,
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="single"), stop_btn="Stop Generation", multimodal=True,
additional_inputs=[], cache_examples=False)
demo.launch(debug=True)