import gradio as gr from transformers import pipeline # Load a Hugging Face model pipeline (sentiment analysis in this example) model = pipeline("sentiment-analysis") # If you don't hafe HF_TOKEN in your enviroment, define it explicitly like this # hf_token = "your_hf_token" # model = pipeline("sentiment-analysis", use_auth_token=hf_token) # Function to perform sentiment analysis def analyze_sentiment(text): results = model(text) return f"Label: {results[0]['label']}, Score: {results[0]['score']:.4f}" # Define the Gradio interface with gr.Blocks() as demo: # Components gr.Markdown("# Welcome to the Sentiment Analysis App!") gr.Markdown("## Enter your text and we'll analyze the sentiment behind it.") with gr.Row(): with gr.Column(): input_text = gr.Textbox(lines=2, placeholder="Enter text to analyze...", label="Input Text") analyze_button = gr.Button("Analyze", elem_id="analyze-btn") with gr.Column(): output_text = gr.Textbox(label="Analysis Result", interactive=False) # Attach function analyze_button.click(fn=analyze_sentiment, inputs=input_text, outputs=output_text) # Add some CSS to style your interface demo.css = """ #analyze-btn { background-color: #4CAF50; color: white; } #analyze-btn:hover { background-color: #45a049; } """ # Launch the app, use share=True to obtain shareable link that works for 72 hours demo.launch(share=True)