Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- chat-interface.py +12 -0
- model-handler.py +38 -0
- streamlit-app.py +55 -0
chat-interface.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
class ChatInterface:
|
4 |
+
def __init__(self):
|
5 |
+
self.chat_input_key = "chat_input"
|
6 |
+
|
7 |
+
def get_user_input(self):
|
8 |
+
return st.chat_input("Type your message here...", key=self.chat_input_key)
|
9 |
+
|
10 |
+
def display_message(self, role, content):
|
11 |
+
with st.chat_message(role):
|
12 |
+
st.write(content)
|
model-handler.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import time
|
3 |
+
|
4 |
+
class ModelHandler:
|
5 |
+
def __init__(self, model, tokenizer):
|
6 |
+
self.model = model
|
7 |
+
self.tokenizer = tokenizer
|
8 |
+
|
9 |
+
def generate_response(self, conversation):
|
10 |
+
inputs = self.tokenizer(conversation, return_tensors="pt", truncation=True, max_length=1024)
|
11 |
+
|
12 |
+
start_time = time.time()
|
13 |
+
output = ""
|
14 |
+
|
15 |
+
with torch.no_grad():
|
16 |
+
for _ in range(150): # Increased range for potentially longer responses
|
17 |
+
generated = self.model.generate(
|
18 |
+
**inputs,
|
19 |
+
max_new_tokens=1,
|
20 |
+
do_sample=True,
|
21 |
+
top_k=50,
|
22 |
+
top_p=0.95
|
23 |
+
)
|
24 |
+
|
25 |
+
new_token = generated[0, -1].item()
|
26 |
+
new_word = self.tokenizer.decode([new_token])
|
27 |
+
output += new_word
|
28 |
+
|
29 |
+
inputs = self.tokenizer(conversation + output, return_tensors="pt", truncation=True, max_length=1024)
|
30 |
+
|
31 |
+
if time.time() - start_time >= 0.01:
|
32 |
+
yield output
|
33 |
+
start_time = time.time()
|
34 |
+
|
35 |
+
if new_token == self.tokenizer.eos_token_id:
|
36 |
+
break
|
37 |
+
|
38 |
+
return output.strip()
|
streamlit-app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
from chat_interface import ChatInterface
|
5 |
+
from model_handler import ModelHandler
|
6 |
+
|
7 |
+
# Set page configuration
|
8 |
+
st.set_page_config(page_title="Inspection Engineer Chat", page_icon="🔍")
|
9 |
+
|
10 |
+
# Initialize session state
|
11 |
+
if "messages" not in st.session_state:
|
12 |
+
st.session_state.messages = [
|
13 |
+
{"role": "system", "content": "You are an experienced senior inspection engineer. Your task is to analyze the scope provided in the input and determine the class item as an output."}
|
14 |
+
]
|
15 |
+
|
16 |
+
@st.cache_resource
|
17 |
+
def load_model():
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained("amiguel/classItem-FT-llama-3-1-8b-instruct")
|
19 |
+
model = AutoModelForCausalLM.from_pretrained("amiguel/classItem-FT-llama-3-1-8b-instruct")
|
20 |
+
return ModelHandler(model, tokenizer)
|
21 |
+
|
22 |
+
def main():
|
23 |
+
st.title("Inspection Engineer Assistant")
|
24 |
+
|
25 |
+
# Load model
|
26 |
+
model_handler = load_model()
|
27 |
+
|
28 |
+
# Initialize chat interface
|
29 |
+
chat_interface = ChatInterface()
|
30 |
+
|
31 |
+
# Display chat messages
|
32 |
+
for message in st.session_state.messages[1:]: # Skip the system message
|
33 |
+
chat_interface.display_message(message["role"], message["content"])
|
34 |
+
|
35 |
+
# Chat input
|
36 |
+
user_input = chat_interface.get_user_input()
|
37 |
+
|
38 |
+
if user_input:
|
39 |
+
# Add user message to chat history
|
40 |
+
st.session_state.messages.append({"role": "user", "content": user_input})
|
41 |
+
chat_interface.display_message("user", user_input)
|
42 |
+
|
43 |
+
# Prepare the full conversation context
|
44 |
+
conversation = "\n".join([f"{msg['role']}: {msg['content']}" for msg in st.session_state.messages])
|
45 |
+
|
46 |
+
# Generate response
|
47 |
+
with st.spinner("Analyzing..."):
|
48 |
+
response = model_handler.generate_response(conversation)
|
49 |
+
|
50 |
+
# Add assistant message to chat history
|
51 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
52 |
+
chat_interface.display_message("assistant", response)
|
53 |
+
|
54 |
+
if __name__ == "__main__":
|
55 |
+
main()
|