Spaces:
Sleeping
Sleeping
Upload clean-chat-interface.py
Browse files- clean-chat-interface.py +103 -0
clean-chat-interface.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
import time
|
5 |
+
import json
|
6 |
+
from datetime import datetime
|
7 |
+
|
8 |
+
class ChatApp:
|
9 |
+
def __init__(self):
|
10 |
+
st.set_page_config(page_title="Inspection Methods Engineer Assistant", page_icon="🔍", layout="wide")
|
11 |
+
self.initialize_session_state()
|
12 |
+
self.model_handler = self.load_model()
|
13 |
+
|
14 |
+
def initialize_session_state(self):
|
15 |
+
if "messages" not in st.session_state:
|
16 |
+
st.session_state.messages = [
|
17 |
+
{"role": "system", "content": "You are an experienced inspection methods engineer. Your task is to classify the following scope: analyze the scope provided in the input and determine the class item as an output."}
|
18 |
+
]
|
19 |
+
|
20 |
+
@staticmethod
|
21 |
+
@st.cache_resource
|
22 |
+
def load_model():
|
23 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
24 |
+
st.info(f"Using device: {device}")
|
25 |
+
model_name = "amiguel/classItem-FT-llama-3-1-8b-instruct"
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
27 |
+
model = AutoModelForCausalLM.from_pretrained(
|
28 |
+
model_name,
|
29 |
+
device_map="auto",
|
30 |
+
load_in_8bit=device == "cuda"
|
31 |
+
)
|
32 |
+
return ModelHandler(model, tokenizer)
|
33 |
+
|
34 |
+
def display_message(self, role, content):
|
35 |
+
with st.chat_message(role):
|
36 |
+
st.markdown(content)
|
37 |
+
|
38 |
+
def get_user_input(self):
|
39 |
+
return st.chat_input("Type your message here...")
|
40 |
+
|
41 |
+
def stream_response(self, response):
|
42 |
+
placeholder = st.empty()
|
43 |
+
full_response = ""
|
44 |
+
for word in response.split():
|
45 |
+
full_response += word + " "
|
46 |
+
placeholder.markdown(full_response + "▌")
|
47 |
+
time.sleep(0.01)
|
48 |
+
placeholder.markdown(full_response)
|
49 |
+
return full_response
|
50 |
+
|
51 |
+
def save_chat_history(self):
|
52 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
53 |
+
filename = f"chat_history_{timestamp}.json"
|
54 |
+
with open(filename, "w") as f:
|
55 |
+
json.dump(st.session_state.messages, f, indent=2)
|
56 |
+
return filename
|
57 |
+
|
58 |
+
def run(self):
|
59 |
+
st.title("Inspection Methods Engineer Assistant")
|
60 |
+
|
61 |
+
for message in st.session_state.messages:
|
62 |
+
if message["role"] != "system":
|
63 |
+
self.display_message(message["role"], message["content"])
|
64 |
+
|
65 |
+
user_input = self.get_user_input()
|
66 |
+
if user_input:
|
67 |
+
self.display_message("user", user_input)
|
68 |
+
st.session_state.messages.append({"role": "user", "content": user_input})
|
69 |
+
|
70 |
+
conversation = "\n\n".join([msg["content"] for msg in st.session_state.messages])
|
71 |
+
|
72 |
+
with st.spinner("Analyzing and classifying scope..."):
|
73 |
+
response = self.model_handler.generate_response(conversation.strip())
|
74 |
+
|
75 |
+
clean_response = self.clean_response(response)
|
76 |
+
with st.chat_message("assistant"):
|
77 |
+
full_response = self.stream_response(clean_response)
|
78 |
+
st.session_state.messages.append({"role": "assistant", "content": full_response})
|
79 |
+
|
80 |
+
st.sidebar.title("Chat Options")
|
81 |
+
if st.sidebar.button("Save Chat History"):
|
82 |
+
filename = self.save_chat_history()
|
83 |
+
st.sidebar.success(f"Chat history saved to {filename}")
|
84 |
+
|
85 |
+
def clean_response(self, response):
|
86 |
+
# Remove any system: or user: prefixes from the response
|
87 |
+
lines = response.split('\n')
|
88 |
+
clean_lines = [line.split(':', 1)[-1].strip() if ':' in line else line for line in lines]
|
89 |
+
return '\n'.join(clean_lines)
|
90 |
+
|
91 |
+
class ModelHandler:
|
92 |
+
def __init__(self, model, tokenizer):
|
93 |
+
self.model = model
|
94 |
+
self.tokenizer = tokenizer
|
95 |
+
|
96 |
+
def generate_response(self, conversation):
|
97 |
+
inputs = self.tokenizer(conversation, return_tensors="pt").to(self.model.device)
|
98 |
+
outputs = self.model.generate(**inputs, max_new_tokens=100)
|
99 |
+
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
100 |
+
|
101 |
+
if __name__ == "__main__":
|
102 |
+
app = ChatApp()
|
103 |
+
app.run()
|